
Fast and Precise Hybrid Type Inference for JavaScript

Brian Hackett Shu-yu Guo ∗

Mozilla
{bhackett,shu}@mozilla.com

Abstract
JavaScript performance is often bound by its dynamically typed na-
ture. Compilers do not have access to static type information, mak-
ing generation of efficient, type-specialized machine code difficult.
We seek to solve this problem by inferring types. In this paper we
present a hybrid type inference algorithm for JavaScript based on
points-to analysis. Our algorithm is fast, in that it pays for itself in
the optimizations it enables. Our algorithm is also precise, generat-
ing information that closely reflects the program’s actual behavior
even when analyzing polymorphic code, by augmenting static anal-
ysis with run-time type barriers.

We showcase an implementation for Mozilla Firefox’s Java-
Script engine, demonstrating both performance gains and viability.
Through integration with the just-in-time (JIT) compiler in Fire-
fox, we have improved performance on major benchmarks and
JavaScript-heavy websites by up to 50%. Inference-enabled com-
pilation is the default compilation mode as of Firefox 9.

Categories and Subject Descriptors D.3.4 [Processors]: Com-
pilers, optimization

Keywords type inference, hybrid, just-in-time compilation

1. The Need for Hybrid Analysis
Consider the example JavaScript program in Figure 1. This pro-
gram constructs an array of Box objects wrapping integer values,
then calls a use function which adds up the contents of all those Box
objects. No types are specified for any of the variables or other val-
ues used in this program, in keeping with JavaScript’s dynamically-
typed nature. Nevertheless, most operations in this program inter-
act with type information, and knowledge of the involved types is
needed to compile efficient code.

In particular, we are interested in the addition res + v on line 9.
In JavaScript, addition coerces the operands into strings or numbers
if necessary. String concatenation is performed for the former, and
numeric addition for the latter.

Without static information about the types of res and v, a JIT
compiler must emit code to handle all possible combinations of
operand types. Moreover, every time values are copied around, the
compiler must emit code to keep track of the types of the involved

∗Work partly done at the University of California, Los Angeles, Los Ange-
les, CA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

1 function Box(v) {
2 this.p = v;
3 }
4
5 function use(a) {
6 var res = 0;
7 for (var i = 0; i < 1000; i++) {
8 var v = a[i].p;
9 res = res + v;

10 }
11 return res;
12 }
13
14 function main() {
15 var a = [];
16 for (var i = 0; i < 1000; i++)
17 a[i] = new Box(10);
18 use(a);
19 }

Figure 1. Motivating Example

values, using either a separate type tag for the value or a specialized
marshaling format. This incurs a large runtime overhead on the
generated code, greatly increases the complexity of the compiler,
and makes effective implementation of important optimizations
like register allocation and loop invariant code motion much harder.

If we knew the types of res and v, we could compile code
which performs an integer addition without the need to check or
to track the types of res and v. With static knowledge of all types
involved in the program, the compiler can in many cases generate
code similar to that produced for a statically-typed language such
as Java, with similar optimizations.

We can statically infer possible types for res and v by reasoning
about the effect the program’s assignments and operations have on
values produced later. This is illustrated below. For brevity, we do
not consider the possibility of Box and use being overwritten.

1. On line 17, main passes an integer when constructing Box ob-
jects. On line 2, Box assigns its parameter to the result’s p prop-
erty. Thus, Box objects can have an integer property p.

2. Also on line 17, main assigns a Box object to an element of a.
On line 15, a is assigned an array literal, so the elements of that
literal could be Box objects.

3. On line 18, main passes a to use, so a within use can refer to
the array created on line 15. When use accesses an element of
a on line 8, per #2 the result can be a Box object.

4. On line 8, property p of a value at a[i] is assigned to v. Per #3
a[i] can be a Box object, and per #1 the p property can be an
integer. Thus, v can be an integer.

5. On line 6, res is assigned an integer. Since v can be an integer,
res + v can be an integer. When that addition is assigned to
res on line 9, the assigned type is consistent with the known
possible types of res.

This reasoning can be captured with inclusion constraints; we
compute sets of possible types for each expression and model the
flow between these sets as subset relationships. To compile correct
code, we need to know not just some possible types for variables,
but all possible types. In this sense, the static inference above
is unsound: it does not account for all possible behaviors of the
program. A few such behaviors are described below.

• The read of a[i] may access a hole in the array. Out of bounds
array accesses in JavaScript produce the undefined value if the
array’s prototype does not have a matching property. Such holes
can also be in the middle of an array; assigning to just a[0] and
a[2] leaves a missing value at a[1].

• Similarly, the read of a[i].p may be accessing a missing prop-
erty and may produce the undefined value.

• The addition res + v may overflow. JavaScript has a single
number type which does not distinguish between integers and
doubles. However, it is extremely important for performance
that JavaScript compilers distinguish the two and try to repre-
sent numbers as integers wherever possible. An addition of two
integers may overflow and produce a number which can only be
represented as a double.

In some cases these behaviors can be proven not to occur, but
usually they cannot be ruled out. A standard solution is to capture
these behaviors statically, but this is unfruitful. The static analysis
must be sound, and to be sound in light of highly dynamic behav-
iors is to be conservative: many element or property accesses will
be marked as possibly undefined, and many integer operations will
be marked as possibly overflowing. The resulting type information
would be too imprecise to be useful for optimization.

Our solution, and our key technical novelty, is to combine un-
sound static inference of the types of expressions and heap values
with targeted dynamic type updates. Behaviors which are not ac-
counted for statically must be caught dynamically, modifying in-
ferred types to reflect those new behaviors if caught. If a[i] ac-
cesses a hole, the inferred types for the result must be marked as
possibly undefined. If res + v overflows, the inferred types for
the result must be marked as possibly a double.

With or without analysis, the generated code needs to test for
array holes and integer overflow in order to correctly model the
semantics of the language. We call dynamic type updates based
on these events semantic triggers; they are placed on rarely taken
execution paths and incur a cost to update the inferred types only
the first time that path is taken.

The presence of these triggers illustrates the key invariant our
analysis preserves:

Inferred types must conservatively model all types for vari-
ables and object properties which currently exist and have
existed in the past, but not those which could exist in the
future.

This has important implications:

• The program can be analyzed incrementally. Code is not ana-
lyzed until it first executes, and code which does not execute
need not be analyzed. This is necessary for JavaScript due to
dynamic code loading and generation. It is also important for
reducing analysis time on websites, which often load several
megabytes of code and only execute a fraction of it.

• Assumptions about types made by the JIT compiler can be
invalidated at almost any time. This affects the correctness of
the JIT-compiled code, and the virtual machine must be able
to recompile or discard code at any time, especially when that
code is on the stack.

Dynamic checks and the key invariant are also critical to our
handling of polymorphic code within a program. Suppose some-
where else in the program we have new Box("hello!"). Doing so
will cause Box objects to be created which hold strings, illustrating
the use of Box as a polymorphic structure. Our analysis does not
distinguish Box objects created in different places, and the result of
the a[i].p access in use will be regarded as potentially producing
a string. Naively, solving the constraints produced by the analy-
sis will mark a[i].p, v, res + v, and res as all producing either
an integer or a string, even if use’s runtime behavior is actually
monomorphic and only works on Box objects containing integers.

This problem of imprecision leaking across the program is seri-
ous: even if a program is mostly monomorphic, analysis precision
can easily be poisoned by a small amount of polymorphic code.

We deal with uses of polymorphic structures and functions
using runtime checks. At all element and property accesses, we
keep track of both the set of types which could be observed for the
access and the set of types which have been observed. The former
will be a superset of the latter, and if the two are different then we
insert a runtime check, a type barrier, to check for conformance
between the resultant value and the observed type set. Mismatches
lead to updates of the observed type set.

For the example program, a type barrier is required on the
a[i].p access on line 8. The barrier will test that the value being
read is an integer. If a string shows up due to a call to use outside of
main, then the possible types of the a[i].p access will be updated,
and res and v will be marked as possibly strings by resolving the
analysis constraints.

Type barriers differ from the semantic triggers described earlier
in that the tests they perform are not required by the language and
do not need to be performed if our analysis is not being used. We
are effectively betting that the required barriers pay for themselves
by enabling generation of better code using more precise type
information. We have found this to be the case in practice (§4.1.1,
§4.2.5).

1.1 Comparison with other techniques
The reader may question, “Why not use more sophisticated static
analyses that produce more precise results?” Our choice for the
static analysis to not distinguish Box objects created in different
places is deliberate. To be useful in a JIT setting, the analysis must
be fast, and the time and space used by the analysis quickly degrade
as complexity increases. Moreover, there is a tremendous variety of
polymorphic behavior seen in JavaScript code in the wild, and to
retain precision even the most sophisticated static analysis would
need to fall back to dynamic checks some of the time.

Interestingly, less sophisticated static analyses do not fare well
either. Unification-based analyses undermine the utility of dynamic
checks; precision is unrecoverable despite dynamic monitoring.

More dynamic compilation strategies, such as the technique
used by V8’s Crankshaft JavaScript engine, generate type-special-
ized code based on profiling information, without static knowledge
of possible argument or heap types [9, 10]. Such techniques will de-
termine the types of expressions with similar precision to our anal-
ysis, but will always require type checks on function arguments or
when reading heap values. By modeling all possible types of heap
values, we only need type checks at accesses with type barriers, a
difference which significantly improves performance (§4.1.1).

We believe that our partitioning of static and dynamic analysis is
a sweet spot for JIT compilation of a highly dynamic language. Our

main technical contribution is a hybrid inference algorithm for the
entirety of JavaScript, using inclusion constraints to unsoundly in-
fer types extended with runtime semantic triggers to generate sound
type information, as well as type barriers to efficiently and precisely
handle polymorphic code. Our practical contributions include both
an implementation of our algorithm and a realistic evaluation. The
implementation is integrated with the JIT compiler used in Fire-
fox and is of production quality. Our evaluation has various metrics
showing the effectiveness of the analysis and modified compiler on
benchmarks as well as popular websites, games, and demos.

The remainder of the paper is organized as follows. In §2 we
describe the static and dynamic aspects of our analysis. In §3
we outline implementation of the analysis as well as integration
with the JavaScript JIT compiler inside Firefox. In §4 we present
empirical results. In §5 we discuss related work, and in §6 we
conclude.

2. Analysis
We present our analysis in two parts, the static “may-have-type”
analysis and the dynamic “must-have-type” analysis. The algorithm
is based on Andersen-style (inclusion based) pointer analysis [6].
The static analysis is intentionally unsound with respect to the se-
mantics of JavaScript. It does not account for all possible behaviors
of expressions and statements and only generates constraints that
model a “may-have-type” relation. All behaviors excluded by the
type constraints must be detected at runtime and their effects on
types in the program dynamically recorded. The analysis runs in
the browser as functions are trying to execute: code is analyzed
function-at-a-time.

Inclusion based pointer analysis has a worst-case complexity of
O(n3) and is very well studied. It has been shown to perform and
scale well despite its cubic worst-case complexity [23]. We reaffirm
this with our evaluation; even when analyzing large amounts of
code the presence of runtime checks keeps type sets small and
constraints easy to resolve.

We describe constraint generation and checks required for a
simplified core of JavaScript expressions and statements, shown in
Figure 2. We let f ,x,y range over variables, p range over property
names, i range over integer literals, and s range over string literals.
The only control flow in the core language is if, which tests for
definedness, and via anonymous functions fn.

The types over which we are trying to infer are also shown in
Figure 2. The types can be primitive or an object type o.1 The int
type indicates a number expressible as a signed 32-bit integer and
is subsumed by number — int is added to all type sets containing
number. There is no arrow type for functions, as functions are
treated as objects with special argument and return properties, as
we show below. Finally, we have sets of types which the analysis
computes.

2.1 Object Types

To reason about the effects of property accesses, we need type
information for JavaScript objects and their properties. Each object
is immutably assigned an object type o. When o ∈ Te for some
expression e, then the possible values for e when it is executed
include all objects with type o.

For the sake of brevity and ease of exposition, our simpli-
fied JavaScript core only contains the ability to construct Object-
prototyped object literals via the {} syntax; two objects have the
same type when they were allocated via the same literal.

In full JavaScript, types are assigned to objects according to
their prototype: all objects with the same type have the same proto-
type. Additionally, objects with the same prototype have the same

1 In full JavaScript, we also have the primitive types bool and null.

v ::= undefined | i | s | {} | fn(x) s ret e values

e ::= v | x | x+ y | x.p | x[i] | f (x) expressions

s ::= if(x) s else s | x = e | x.p = e | x[i] = e statements

τ ::= undefined | int | number | string | o types

T ::= P(τ) type sets

A ::= τ ∈ T | A∧A | A∨A antecedents

C ::= T ⊇ T | T ⊇B T | A⇒C | ∀o ∈ T ⇒C constraints

Figure 2. Simplified JavaScript Core, Types, and Constraints

type, except for plain Object, Array and Function objects. Object
and Array objects have the same type if they were allocated at the
same source location, and Function objects have the same type if
they are closures for the same script. Object and Function objects
which represent builtin objects such as class prototypes, the Math
object and native functions are given unique types, to aid later op-
timizations (§2.5).

The type of an object is nominal: it is independent from the
properties it has. Objects which are structurally identical may have
different types, and objects with the same type may have different
structures. This is crucial for efficient analysis. JavaScript allows
addition or deletion of object properties at any time. Using struc-
tural typing would make an object’s type a flow-sensitive property,
making precise inference harder to achieve.

Instead, for each object type we compute the possible properties
which objects of that type can have and the possible types of those
properties. These are denoted as type sets prop(o, p) and index(o).
The set prop(o, p) captures the possible types of a non-integer
property p for objects with type o, while index(o) captures the
possible types of all integer properties of all objects with type o.
These sets cover the types of both “own” properties (those directly
held by the object) as well as properties inherited from the object’s
prototype. Function objects have two additional type sets arg(o)
and ret(o), denoting the possible types that the function’s single
parameter and return value can have.

2.2 Type Constraints
The static portion of our analysis generates constraints modeling
the flow of types through the program. We assign to each expression
e a type set representing the set of types it may have at runtime, de-
noted Te. These constraints are unsound with respect to JavaScript
semantics. Each constraint is augmented with triggers to fill in the
remaining possible behaviors of the operation. For each rule, we
informally describe the required triggers.

The grammar of constraints are shown in Figure 2. We have
the standard subset constraint, ⊇, a barrier subset constraint, ⊇B ,
the simple conditional constraint,⇒, and the universal conditional
constraint. For two type sets X and Y , X ⊇Y means that all types in
Y are propagated to X at the time of constraint generation, i.e. dur-
ing analysis. On the other hand, X ⊇B Y means that if Y contains
types that are not in X , then a type barrier is required which updates
the types in X according to values which are dynamically assigned
to the location X represents (§2.3). Conditional constraints’ an-
tecedents are limited to conjunctions and disjunctions of set mem-
bership tests. For an antecendent A and a constraint C, A ⇒ C
takes on the meaning of C whenever A holds during propagation.
The universal conditional constraint ∀o ∈ T ⇒ C is like the sim-
ple conditional constraint, but is always universally quantified over
all object types of a type set T . Constraint propagation can happen
both during analysis and at runtime. Barriers may trigger propa-
gation at runtime, and the set membership antecedent is checked

C : (expression+ statement)→P(C)

undefined
{

Tundefined ⊇ {undefined}
}

(UNDEF)

i
{

Ti ⊇ {int}
}

(INT)

s
{

Ts ⊇ {string}
}

(STR)

{}
{

T{} ⊇ {o}
}

where o fresh (OBJ)

fn(x) s ret e Tfn(x) s ret e ⊇ {o},
Tx ⊇B arg(o),
ret(o)⊇ Te

 where o fresh (FUN)

x /0 (VAR)

x+ y
int ∈ Tx∧int ∈ Ty⇒ Tx+y ⊇ {int},
int ∈ Tx∧number ∈ Ty⇒ Tx+y ⊇ {number},
number ∈ Tx∧int ∈ Ty⇒ Tx+y ⊇ {number},
string ∈ Tx∨string ∈ Ty⇒ Tx+y ⊇ {string}

(ADD)

x.p
{
∀o ∈ Tx⇒ Tx.p ⊇B prop(o, p)

}
(PROP)

x[i]
{
∀o ∈ Tx⇒ Tx[i] ⊇B index(o)

}
(INDEX)

x = e
{

Tx ⊇ Te
}

(A-VAR)

x.p = e
{
∀o ∈ Tx⇒ prop(o, p)⊇ Te

}
(A-PROP)

x[i] = e
{
∀o ∈ Tx⇒ index(o)⊇ Te

}
(A-INDEX)

f (x)
{
∀o ∈ Tf ⇒ arg(o)⊇ x,
∀o ∈ Tf ⇒ Tf (x) ⊇ ret(o)

}
(APP)

if(x) s1 else s2 C (s1)∪C (s2) (IF)

Figure 3. Constraint Generation Function C

during propagation. This is a radical departure from the traditional
model of generating a constraint graph then immediately solving
that graph.

Rules for the constraint generation function C are shown in
Figure 3. On the lefthand column is the expression or statement to
be analyzed, and on the right hand column is the set of constraints
generated. Statically analyzing a function takes the union of the
results from applying C to every statement in the method.

The UNDEF, INT, STR, and OBJ rules for literals and the VAR
rule for variables are straightforward.

The FUN rule for anonymous function literals is similar to the
object literal rule, but also sets up additional constraints for its
argument x and its body e. This rule may be thought of as a read out
of f ’s argument and an assignment into f ’s return value. The body
of the function, s, is not analyzed. Recall that we analyze functions
lazily, so the body is not processed until it is about to execute.

The ADD rule is complex, as addition in JavaScript is similarly
complex. It is defined for any combination of values, can perform
either a numeric addition, string concatenation, or even function
calls if either of its operands is an object (calling their valueOf or
toString members, producing a number or string).

Using unsound modeling lets us cut through this complexity.
Additions in actual programs are typically used to add two numbers
or concatenate a string with something else. We statically model
exactly these cases and use semantic triggers to monitor the results
produced by other combinations of values, at little runtime cost.
Note that even the integer addition rule we have given is unsound:
the result will be marked as an integer, ignoring the possibility of
overflow.

PROP accesses a named property p from the possible objects
referred to by x, with the result the union of prop(o, p) for all
such objects. This rule is complete only in cases where the object
referred to by x (or its prototype) actually has the p property.
Accesses on properties which are not actually part of an object
produce undefined. Accesses on missing properties are rare, and
yet in many cases we cannot prove that an object definitely has
some property. In such cases we do not dilute the resulting type
sets with undefined. We instead use a trigger on execution paths
accessing a missing property to update the result type of the access
with undefined.

INDEX is similar to PROP, with the added problem that any
property of the object could be accessed. In JavaScript, x["p"] is
equivalent to x.p. If x has the object type o, an index operation
can access a potentially infinite number of type sets prop(o, p).
Figuring out exactly which such properties are possible is generally
intractable. We do not model such arbitrary accesses at all, and treat
all index operations as operating on an integer, which we collapse
into a single type set index(o). In full JavaScript, any indexed
access which is on a non-integer property, or is on an integer
property which is missing from an object, must be accounted for
with triggers in the same manner as PROP.

A-VAR, A-PROP and A-INDEX invert the corresponding read
expressions. These rules are complete, except that A-INDEX pre-
sumes that an integer property is being accessed. Again, in full
JavaScript, the effects on prop(o, p) resulting from assignments to
a string index x["p"] on some x with object type o must be ac-
counted for with runtime checks.

APP for function applications may be thought of as an assign-
ment into f ’s argument and a read out of f ’s body, or return value.
In other words, it is analogous to FUN with the polarities reversed.

Our analysis is flow-insensitive, so the IF rule is simply the
union of the constraints generated by the branches.

2.3 Type Barriers

As described in §1, type barriers are dynamic type checks inserted
to improve analysis precision in the presence of polymorphic code.
Propagation along an assignment X = Y can be modeled statically
as a subset constraint X ⊇ Y or dynamically as a barrier constraint
X ⊇B Y . It is always safe to use one in place of the other; in §4.2.5
we show the effect of always using subset constraints in lieu of
barrier constraints.

For a barrier constraint X ⊇B Y , a type barrier is required
whenever X 6⊇ Y . The barrier dynamically checks that the type
of each value flowing across the assignment is actually in X , and
updates X whenever values of a new type are encountered. Thought
of another way, the vanilla subset constraint propagates all types
during analysis. The barrier subset constraint does not propagate
types during analysis but defers with dynamic checks, propagating
the types only if necessary at runtime.

Type barriers are much like dynamic type casts in Java: assign-
ments from a more general type to a more specific type are possible
as long as a dynamic test occurs for conformance. However, rather
than throw an exception (as in Java) a tripped type barrier will de-
specialize the target of the assignment.

The presence or absence of type barriers for a given barrier con-
straint is not monotonic with respect to the contents of the type sets
in the program. As new types are discovered, new type barriers may
be required, and existing ones may become unnecessary. However,
it is always safe to perform the runtime tests for a given barrier.

In the constraint generation rules in Figure 3 we present three
rules which employ type barriers: PROP, INDEX, and FUN. We use
barriers on function argument binding to precisely model polymor-
phic call sites where only certain combinations of argument types
and callee functions are possible. Barriers could be used for other

Tuse ⊇ {Use} (1)

Ta′ ⊇B arg(Use) (2)

ret(Use)⊇ Tres (3)

Ta ⊇ {A} (4)

Ttmp ⊇ {Box} (5)

∀o ∈ Ttmp⇒ prop(o,p)⊇ {int} (6)

∀o ∈ Ta⇒ index(o)⊇ Ttmp (7)

∀o ∈ Tuse⇒ arg(o)⊇ Ta (8)

∀o ∈ Tuse⇒ Tuse(a) ⊇ ret(o) (9)

∀o ∈ Ta′ ⇒ Ttmp2 ⊇B index(o) (10)

∀o ∈ Ttmp2⇒ Tv ⊇B prop(o,p) (11)

Figure 4. Motivating Example Constraints

types of assignments, such as at return sites, but we do not do so.
Allowing barriers in new places is unlikely to significantly change
the total number of required barriers — improving precision by
adding barriers in one place can make barriers in another place un-
necessary.

2.4 Example Constraints
The constraint generation rules as presented are not expressive
enough to process the motivating example in Figure 1 in full; we
must first desugar the motivating example to look like the simplified
core. In the interest of space, we will instead focus on a few
interesting lines and provide the desugaring where needed. In the
following walkthrough we show how the variable v on line 8 gets
the type int.

At line 5, the declaration of the use function needs to be desug-
ared to assigning an anonymous function to a variable named use.2
This will match FUN. Let us call the fresh object type for the func-
tion Use. We generate (1), (2), and (3). To avoid confusion with the
variable a used below, the argument of use is renamed to a′.

At line 15, an empty array is created. The core does not handle
arrays, but for the purposes of constraint generation it is enough to
treat them as objects. Thus, this will match OBJ and A-VAR. Let
us call the fresh object type for this source location A. Combining
both rules, we generate (4).

At line 17, Box objects are created. Though the core does not
handle new constructions, we may desugar a[i] = new Box(10) to
tmp = {}; tmp.p = 10; a[i] = tmp. The first desugared assign-
ment matches OBJ and A-VAR. Let us call the fresh object type for
this source location Box (this desugaring is approximate; in prac-
tice for new we assign object types to the new object according to
the called function’s prototype). We can combine the above two
rules to generate (5). The second desugared assignment matches
A-PROP and INT. Again, we can combine these two rules to gen-
erate the conditional (6). The third desugared assignment matches
A-INDEX. We generate the conditional (7). At this point we prop-
agate Box through (6) and A through (7), as we know those set
memberships hold during analysis.

At line 18, there is a call to use. This matches APP and gen-
erates the constraints (8) and (9). Note that (2) employs a barrier
constraint. Barrier constraints restrict propagation of types to run-
time, so Ta does not propagate to Ta′ even though we know stat-
ically Use ∈ Tuse. And at the current time, before use is actually
called, Ta′ 6⊇ Ta, which means we need to emit a dynamic check,

2 We do not desugar the Box function in the same fashion as it is used as a
constructor on line 17.

or type barrier, that continues the propagation should new types be
observed during runtime.

Until main is executed to the point where use is called, no fur-
ther analysis is done. That is, we interleave constraint generation,
propagation, and code execution. Propagation, due to barrier con-
straints, can happen during analysis and at runtime. Suppose then
that main is executed and it calls use. First, the type barrier we in-
serted at the argument binding for use is triggered, and the types of
Ta are propagated to Ta′ . That is, Ta′ ⊇ {A}.

Line 8 is where we tie together our extant constraints. First it
must be desugared to use a temporary: tmp2 = a′[i]; v = tmp2.p.
The first desugared assignment matches INDEX and A-VAR. We
combine the two to generate (10). The second desugared assign-
ment matches PROP and A-VAR, so we generate (11). Both (10)
and (11) emit type barriers, so no propagation occurs until line 8
executes. The type barrier required by (10) is triggered and propa-
gates Box to Ttmp2. Now that Box ∈ Ttmp2, the type barrier for (11)
triggers and propagates int from prop(Box,p) to Tv.

At this point, as we have observed all possible types of the
property access a′[i].p, no dynamic checks are required by the
barrier constraints in (10) and (11). But this removal may not be
permanent. If we analyze new code which adds new types to the
type set prop(Box,p), we will need to re-emit the dynamic check.
For instance, if in the future we were to see new Box("hello!")
elsewhere in the code, we would need to re-emit the type barrier.

2.5 Supplemental Analyses

Semantic triggers are generally cheap, but they nevertheless incur
a cost. These checks should be eliminated in as many cases as
possible. Eliminating such checks requires more detailed analysis
information. Rather than build additional complexity into the type
analysis itself, we use supplemental analyses which leverage type
information but do not modify the set of inferred types. We describe
the three most important supplemental analyses below, and our
implementation contains several others.

Integer Overflow In the execution of a JavaScript program, the
overall cost of doing integer overflow checks is very small. On
kernels which do many additions, however, the cost can become
significant. We have measured overflow check overhead at 10-20%
of total execution time on microbenchmarks.

Using type information, we normally know statically where
integers are being added. We use two techniques on those sites
to remove overflow checks. First, for simple additions in a loop
(mainly loop counters) we try to use the loop termination condition
to compute a range check which can be hoisted from the loop, a
standard technique which can only be performed for JavaScript
with type information available. Second, integer additions which
are used as inputs to bitwise operators do not need overflow checks,
as bitwise operators truncate their inputs to 32 bit integers.

Packed Arrays Arrays are usually constructed by writing to their
elements in ascending order, with no gaps; we call these arrays
packed. Packed arrays do not have holes in the middle, and if an
access is statically known to be on a packed array then only a
bounds check is required. There are a large number of ways packed
arrays can be constructed, however, which makes it difficult to
statically prove an array is packed. Instead, we dynamically detect
out-of-order writes on an array, and mark the type of the array
object as possibly not packed. If an object type has never been
marked as not packed, then all objects with that type are packed
arrays.

The packed status of an object type can change dynamically due
to out-of-order writes, possibly invalidating JIT code.

Definite Properties JavaScript objects are internally laid out as a
map from property names to slots in an array of values. If a property

access can be resolved statically to a particular slot in the array,
then the access is on a definite property and can be compiled as a
direct lookup. This is comparable to field accesses in a language
with static object layouts, such as Java or C++.

We identify definite property accesses in three ways. First, if
the property access is on an object with a unique type, we know
the exact JavaScript object being accessed and can use the slot
in its property map. Second, object literals allocated in the same
place have the same type, and definite properties can be picked up
from the order the literal adds properties. Third, objects created
by calling new on the same function will have the same prototype
(unless the function’s prototype property is overwritten), and we
analyze the function’s body to identify properties it definitely adds
before letting the new object escape.

These techniques are sensitive to properties being deleted or
reconfigured, and if such events happen then JIT code will be
invalidated in the same way as by packed array or type set changes.

3. Implementation
We have implemented this analysis for SpiderMonkey, the Java-
Script engine in Firefox. We have also modified the engine’s JIT
compiler, JaegerMonkey, to use inferred type information when
generating code. Without type information, JaegerMonkey gener-
ates code in a fairly mechanical translation from the original Spi-
derMonkey bytecode for a script. Using type information, we were
able to improve on this in several ways:

• Values with statically known types can be tracked in JIT-
compiled code using an untyped representation. Encoding the
type in a value requires significant memory traffic or marshaling
overhead. An untyped representation stores just the data com-
ponent of a value. Additionally, knowing the type of a value
statically eliminates many dynamic type tests.

• Several classical compiler optimizations were added, including
linear scan register allocation, loop invariant code motion, and
function call inlining.
These optimizations could be applied without having static type
information. Doing so is, however, far more difficult and far less
effective than in the case where types are known. For example,
loop invariant code motion depends on knowing whether opera-
tions are idempotent (in general, JavaScript operations are not),
and register allocation requires types to determine whether val-
ues should be stored in general purpose or floating point regis-
ters.

In §3.1 we describe how we handle dynamic recompilation in
response to type changes, and in §3.2 we describe the techniques
used to manage analysis memory usage.

3.1 Recompilation
As described in §1, computed type information can change as a
result of runtime checks, newly analyzed code or other dynamic
behavior. For compiled code to rely on this type information, we
must be able to recompile the code in response to changes in types
while that code is still running.

As each script is compiled, we keep track of all type information
queried by the compiler. Afterwards, the dependencies are encoded
and attached to the relevant type sets, and if those type sets change
in the future the script is marked for recompilation. We represent
the contents of type sets explicitly and eagerly resolve constraints,
so that new types immediately trigger recompilation with little
overhead.

When a script is marked for recompilation, we discard the JIT
code for the script, and resume execution in the interpreter. We do
not compile scripts until after a certain number of calls or loop back

edges are taken, and these counters are reset whenever discarding
JIT code. Once the script warms back up, it will be recompiled
using the new type information in the same manner as its initial
compilation.

3.2 Memory Management

Two major goals of JIT compilation in a web browser stand in stark
contrast to one another: generate code that is as fast as possible,
and use as little memory as possible. JIT code can consume a large
amount of memory, and the type sets and constraints computed
by our analysis consume even more. We reconcile this conflict by
observing how browsers are used in practice: to surf the web. The
web page being viewed, content being generated, and JavaScript
code being run are constantly changing. The compiler and analysis
need to not only quickly adapt to new scripts that are running, but
also to quickly discard regenerable data associated with old scripts
that are no longer running frequently, even if the old scripts are still
reachable and not subject to garbage collection.

We do this with a simple trick: on every garbage collection,
we throw away all JIT code and as much analysis information
as possible. All inferred types are functionally determined from
a small core of type information: type sets for the properties of
objects, function arguments, and the observed type sets associated
with barrier constraints and the semantic triggers that have been
tripped. All type constraints and all other type sets are discarded,
notably the type sets describing the intermediate expressions in
a function without barriers on them. This constitutes the great
majority of the memory allocated for analysis. Should the involved
functions warm back up and require recompilation, they will be
reanalyzed. In combination with the retained type information, the
complete analysis state for the function is then recovered.

In Firefox, garbage collections typically happen every several
seconds. If the user is quickly changing pages or tabs, unused JIT
code and analysis information will be quickly destroyed. If the user
is staying on one page, active scripts may be repeatedly recompiled
and reanalyzed, but the timeframe between collections keeps this
as a small portion of overall runtime. When many tabs are open
(the case where memory usage is most important for the browser),
analysis information typically accounts for less than 2% of the
browser’s overall memory usage.

4. Evaluation
We evaluate the effectiveness of our analysis in two ways. In §4.1
we compare the performance on major JavaScript benchmarks of a
single compiler with and without use of analyzed type information.
In §4.2 we examine the behavior of the analysis on a selection of
JavaScript-heavy websites to gauge the effectiveness of the analysis
in practice.

4.1 Benchmark Performance

As described in §3, we have integrated our analysis into the
JaegerMonkey JIT compiler used in Firefox. We compare perfor-
mance of the compiler used both without the analysis (JM) and
with the analysis (JM+TI). JM+TI adds several major optimiza-
tions to JM, and requires additional compilations due to dynamic
type changes (§3.1). Figure 5 shows the effect of these changes on
the popular SunSpider3 JavaScript benchmark.

The compilation sections of Figure 5 show the total amount of
time spent compiling and the total number of script compilations
for both versions of the compiler. For JM+TI, compilation time also
includes time spent generating and solving type constraints, which
is small: 4ms for the entire benchmark. JM performs 146 compi-
lations, while JM+TI performs 224, an increase of 78. The total

3 http://www.webkit.org/perf/sunspider/sunspider.html

JM Compilation JM+TI Compilation ×1 Times (ms) ×20 Times (ms)

Test Time (ms) # Time (ms) # Ratio JM JM+TI Ratio JM JM+TI Ratio

3d-cube 2.68 15 8.21 24 3.06 14.1 16.6 1.18 226.9 138.8 0.61
3d-morph 0.55 2 1.59 7 2.89 9.8 10.3 1.05 184.7 174.6 0.95
3d-raytrace 2.25 19 6.04 22 2.68 14.7 15.6 1.06 268.6 152.2 0.57
access-binary-trees 0.63 4 1.03 7 1.63 6.1 5.2 0.85 101.4 70.8 0.70
access-fannkuch 0.65 1 2.43 4 3.76 15.3 10.1 0.66 289.9 113.7 0.39
access-nbody 1.01 5 1.49 5 1.47 9.9 5.3 0.54 175.6 73.2 0.42
access-nsieve 0.28 1 0.63 2 2.25 6.9 4.5 0.65 143.1 90.7 0.63
bitops-3bit-bits-in-byte 0.28 2 0.58 3 2.07 1.7 0.8 0.47 29.9 10.0 0.33
bitops-bits-in-byte 0.29 2 0.54 3 1.86 7.0 4.8 0.69 139.4 85.4 0.61
bitops-bitwise-and 0.24 1 0.39 1 1.63 6.1 3.1 0.51 125.2 63.7 0.51
bitops-nsieve-bits 0.35 1 0.73 2 2.09 6.0 3.6 0.60 116.1 63.9 0.55
controlflow-recursive 0.38 3 0.65 6 1.71 2.6 2.7 1.04 49.4 42.3 0.86
crypto-aes 2.04 14 6.61 23 3.24 9.3 10.9 1.17 162.6 107.7 0.66
crypto-md5 1.81 9 3.42 13 1.89 6.1 6.0 0.98 62.0 27.1 0.44
crypto-sha1 0.88 7 2.46 11 2.80 3.1 4.0 1.29 44.2 19.4 0.44
date-format-tofte 0.93 21 2.27 24 2.44 16.4 18.3 1.12 316.6 321.8 1.02
date-format-xparb 0.88 7 1.26 6 1.43 11.6 14.8 1.28 219.4 285.1 1.30
math-cordic 0.45 3 0.94 5 2.09 7.4 3.4 0.46 141.0 50.3 0.36
math-partial-sums 0.47 1 1.03 3 2.19 14.1 12.4 0.88 278.4 232.6 0.84
math-spectral-norm 0.54 5 1.39 9 2.57 5.0 3.4 0.68 92.6 51.2 0.55
regexp-dna 0.00 0 0.00 0 0.00 16.3 16.1 0.99 254.5 268.8 1.06
string-base64 0.87 3 1.90 5 2.18 7.8 6.5 0.83 151.9 103.6 0.68
string-fasta 0.59 4 1.70 9 2.88 10.0 7.3 0.73 124.0 93.4 0.75
string-tagcloud 0.54 4 1.54 6 2.85 21.0 24.3 1.16 372.4 433.4 1.17
string-unpack-code 0.89 8 2.65 16 2.98 24.4 26.7 1.09 417.6 442.5 1.06
string-validate-input 0.58 4 1.65 8 2.84 10.2 9.5 0.93 216.6 184.1 0.85

Total 21.06 146 53.13 224 2.52 261.9 246.4 0.94 4703.6 3700.3 0.79

Figure 5. SunSpider-0.9.1 Benchmark Results

compilation time for JM+TI is 2.52 times that of JM, an increase of
32ms, due a combination of recompilations, type analysis and the
extra complexity of the added optimizations.

Despite the significant extra compilation cost, the type-based
optimizations performed by JM+TI quickly pay for themselves.
The×1 and×20 sections of Figure 5 show the running times of the
two versions of the compiler and generated code on the benchmark
run once and modified to run twenty times, respectively. In the
single run case JM+TI improves over JM by a factor of 1.06. One
run of SunSpider completes in less than 250ms, which makes it
difficult to get an optimization to pay for itself on this benchmark.
JavaScript-heavy webpages are typically viewed for longer than
1/4 of a second, and longer execution times better show the effect
of type based optimizations. When run twenty times, the speedup
given by JM+TI increases to a factor of 1.27.

Figures 6 and 7 compare the performance of JM and JM+TI on
two other popular benchmarks, the V84 and Kraken5 suites. These
suites run for several seconds each, far longer than SunSpider, and
show a larger speedup. V8 scores (which are given as a rate, rather
than a raw time; larger is better) improve by a factor of 1.50, and
Kraken scores improve by a factor of 2.69.

Across the benchmarks, not all tests improved equally, and
some regressed compared to the engine’s performance without the
analysis. These include the date-format-xparb and string-tagcloud
tests in SunSpider, and the RayTrace and RegExp tests in the V8.
These are tests which spend little time in JIT code, and perform
many side effects in VM code itself. Changes to objects which
happen in the VM due to, e.g., the behavior of builtin functions,

4 http://v8.googlecode.com/svn/data/benchmarks/v6/run.html
5 http://krakenbenchmark.mozilla.org

must be tracked to ensure the correctness of type information for
the heap. We are working to reduce the overhead incurred by such
side effects.

4.1.1 Performance Cost of Barriers

The cost of using type barriers is of crucial importance for two
reasons. First, if barriers are very expensive then the effectiveness
of the compiler on websites which require many barriers (§4.2.2) is
greatly reduced. Second, if barriers are very cheap then the time
and memory spent tracking the types of heap values would be
unnecessary.

To estimate this cost, we modified the compiler to artificially in-
troduce barriers at every indexed and property access, as if the types
of all values in the heap were unknown. For benchmarks, this is a
great increase above the baseline barrier frequency (§4.2.2). Fig-
ure 8 gives times for the modified compiler on the tracked bench-
marks. On a single run of SunSpider, performance was even with
the JM compiler. In all other cases, performance was significantly
better than the JM compiler and significantly worse than the JM+TI
compiler.

This indicates that while the compiler will still be able to effec-
tively optimize code in cases where types of heap values are not
well known, accurately inferring such types and minimizing the
barrier count is important for maximizing performance.

4.2 Website Performance

In this section we measure the precision of the analysis on a variety
of websites. The impact of compiler optimizations is difficult to
accurately measure on websites due to confounding issues like
differences in network latency and other browser effects. Since

Test JM JM+TI Ratio

Richards 4497 7152 1.59
DeltaBlue 3250 9087 2.80
Crypto 5205 13376 2.57
RayTrace 3733 3217 0.86
EarleyBoyer 4546 6291 1.38
RegExp 1547 1316 0.85
Splay 4775 7049 1.48

Total 3702 5555 1.50

Figure 6. V8 (version 6) Benchmark Scores (higher is better)

Test JM (ms) JM+TI (ms) Ratio

ai-astar 889.4 137.8 0.15
audio-beat-detection 641.0 374.8 0.58
audio-dft 627.8 352.6 0.56
audio-fft 494.0 229.8 0.47
audio-oscillator 518.0 221.2 0.43
imaging-gaussian-blur 4351.4 730.0 0.17
imaging-darkroom 699.6 586.8 0.84
imaging-desaturate 821.2 209.2 0.25
json-parse-financial 116.6 119.2 1.02
json-stringify-tinderbox 80.0 78.8 0.99
crypto-aes 201.6 158.0 0.78
crypto-ccm 127.8 133.6 1.05
crypto-pbkdf2 454.8 350.2 0.77
crypto-sha256-iterative 153.2 106.2 0.69

Total 10176.4 3778.2 0.37

Figure 7. Kraken-1.1 Benchmark Results

Suite Time/Score vs. JM vs. JM+TI

Sunspider-0.9.1 ×1 262.2 1.00 1.06
Sunspider-0.9.1 ×20 4044.3 0.86 1.09
Kraken-1.1 7948.6 0.78 2.10
V8 (version 6) 4317 1.17 0.78

Figure 8. Benchmark Results with 100% barriers

analysis precision directly ties into the quality of generated code, it
makes a good surrogate for optimization effectiveness.

We modified Firefox to track several precision metrics, all of
which operate at the granularity of individual operations. A brief
description of the websites used is included below.

• Nine popular websites which use JavaScript extensively. Each
site was used for several minutes, exercising various features.

• The membench50 suite6, a memory testing framework which
loads the front pages of 50 popular websites.

• The three benchmark suites described in §4.1.
• Seven games and demos which are bound on JavaScript per-

formance. Each was used for several minutes or, in the case of
non-interactive demos, viewed to completion.

A full description of the tested websites and methodology used
for each is available in the appendix of the full version of the paper.

When developing the analysis and compiler we tuned behavior
for the three covered benchmark suites, as well as various websites.

6 http://gregor-wagner.com/tmp/mem50

Besides the benchmarks, no tuning work has been done for any of
the websites described here.

We address several questions related to analysis precision, listed
by section below. The answers to these sometimes differ signifi-
cantly across the different categories of websites.

§4.2.1 How polymorphic are values read at access sites?

§4.2.2 How often are type barriers required?

§4.2.3 How polymorphic are performed operations?

§4.2.4 How polymorphic are the objects used at access sites?

§4.2.5 How important are type barriers for precision?

4.2.1 Access Site Polymorphism
The degree of polymorphism used in practice is of utmost impor-
tance for our analysis. The analysis is sound and will always com-
pute a lower bound on the possible types that can appear at the var-
ious points in a program, so the precision of the generated type in-
formation is limited for access sites and operations which are poly-
morphic in practice. We draw the following distinction for the level
of precision obtained:

Monomorphic Sites that have only ever produced a single kind of
value. Two values are of the same kind if they are either prim-
itives of the same type or both objects with possibly different
object types. Access sites containing objects of multiple types
can often be optimized just as well as sites containing objects
of a single type, as long as all the observed object types share
common attributes (§4.2.4).

Dimorphic Sites that have produced either strings or objects (but
not both), and also at most one of the undefined, null, or
a boolean value. Even though multiple kinds are possible at
such sites, an untyped representation can still be used, as a sin-
gle test on the unboxed form will determine the type. The un-
typed representation of objects and strings are pointers, whereas
undefined, null, and booleans are either 0 or 1.

Polymorphic Sites that have produced values of multiple kinds.
Compiled code must use a typed representation which keeps
track of the value’s kind.

The inferred precision section of Figure 9 shows the fractions of
dynamic indexed element and property reads which were at a site
inferred as producing monomorphic, dimorphic, or polymorphic
sets of values. All these sites have type barriers on them, so the
set of inferred types is equivalent to the set of observed types.

The category used for a dynamic access is determined from the
types inferred at the time of the access. Since the types inferred for
an access site can grow as a program executes, dynamic accesses at
the same site can contribute to different columns over time.

Averaged across pages, 84.7% of reads were at monomorphic
sites, and 90.2% were at monomorphic or dimorphic sites. The
latter figure is 85.4% for websites, 97.3% for benchmarks, and
94.3% for games and demos; websites are more polymorphic than
games and demos, but by and large behave in a monomorphic
fashion.

4.2.2 Barrier Frequency
Examining the frequency with which type barriers are required
gives insight to the precision of the model of the heap constructed
by the analysis.

The Barrier column of Figure 9 shows the frequencies of in-
dexed and property accesses on sampled pages which required a
barrier. Averaged across pages, barriers were required on 41.4% of
such accesses. There is a large disparity between websites and other
pages. Websites were fairly homogenous, requiring barriers on be-

Inferred Precision (%) Arithmetic (%) Indices (%)

Test Mono Di Poly Barrier (%) Int Double Other Unknown Int Double Other Unknown

gmail 78 5 17 47 62 9 7 21 44 0 47 8
googlemaps 81 7 12 36 66 26 3 5 60 6 30 4
facebook 73 11 16 42 43 0 40 16 62 0 32 6
flickr 71 19 10 74 61 1 30 8 27 0 70 3
grooveshark 64 15 21 63 65 1 13 21 28 0 56 16
meebo 78 11 10 35 66 9 18 8 17 0 34 49
reddit 71 7 22 51 64 0 29 7 22 0 71 7
youtube 83 11 6 38 50 27 19 4 33 0 38 29
280slides 79 3 19 64 48 51 1 0 6 0 91 2
membench50 76 11 13 49 65 7 18 10 44 0 47 10

sunspider 99 0 1 7 72 21 7 0 95 0 4 1
v8bench 86 7 7 26 98 1 0 0 100 0 0 0
kraken 100 0 0 3 61 37 2 0 100 0 0 0

angrybirds 97 2 1 93 22 78 0 0 88 8 0 5
gameboy 88 0 12 16 54 36 3 7 88 0 0 12
bullet 84 0 16 92 54 38 0 7 79 20 0 1
lights 97 1 2 15 34 66 0 1 95 0 4 1
FOTN 98 1 1 20 39 61 0 0 96 0 3 0
monalisa 99 1 0 4 94 3 2 0 100 0 0 0
ztype 91 1 9 52 43 41 8 8 79 9 12 0

Average 84.7 5.7 9.8 41.4 58.1 25.7 10.0 6.2 63.2 1.7 27.0 7.7

Figure 9. Website Type Profiling Results

tween 35% and 74% of accesses (averaging 50%), while bench-
marks, games and demos were generally much lower, averaging
17.9% except for two outliers above 90%.

The larger proportion of barriers required for websites indicates
that heap layouts and types tend to be more complicated for web-
sites than for games and demos. Still, the presence of the type barri-
ers themselves means that we detect as monomorphic the very large
proportion of access sites which are, with only a small amount of
barrier checking overhead incurred by the more complicated heaps.

The two outliers requiring a very high proportion of barriers
do most of their accesses at a small number of sites; the involved
objects have multiple types assigned to their properties, which
leads to barriers being required. Per §4.1.1, such sites will still see
significant performance improvements but will perform worse than
if the barriers were not in place. We are building tools to identify
hot spots and performance faults in order to help developers more
easily optimize their code.

4.2.3 Operation Precision

The arithmetic and indices sections of Figure 9 show the frequency
of inferred types for arithmetic operations and the index operand
of indexed accesses, respectively. These are operations for which
precise type information is crucial for efficient compilation, and
give a sense of the precision of type information for operations
which do not have associated type barriers.

In the arithmetic section, the Int, Double, Other, and Unknown
columns indicate, respectively, operations on known integers which
give an integer result, operations on integers or doubles which give
a double result, operations on any other type of known value, and
operations where at least one of the operand types is unknown.
Overall, precise types were found for 93.8% of arithmetic opera-
tions, including 90.2% of operations performed by websites. Com-
paring websites with other pages, websites tend to do far more
arithmetic on non-numeric values — 27.8% vs. 0.5% — and con-
siderably less arithmetic on doubles — 13.1% vs. 46.1%.

Indexed Acc. (%) Property Acc. (%)

Test Packed Array Uk Def PIC Uk

gmail 90 4 5 31 57 12
googlemaps 92 1 7 18 77 5
facebook 16 68 16 41 53 6
flickr 27 0 73 33 53 14
grooveshark 90 2 8 20 66 14
meebo 57 0 43 40 57 3
reddit 97 0 3 45 51 4
youtube 100 0 0 32 49 19
280slides 88 12 0 23 56 21
membench50 80 4 16 35 58 6

sunspider 93 6 1 81 19 0
v8bench 7 93 0 64 36 0
kraken 99 0 0 96 4 0

angrybirds 90 0 10 22 76 2
gameboy 98 0 2 6 94 0
bullet 4 96 0 32 65 3
lights 97 3 1 21 78 1
FOTN 91 6 3 46 54 0
monalisa 87 0 13 78 22 0
ztype 100 0 0 23 76 0

Average 75.2 14.8 10.1 39.4 55.1 5.5

Figure 10. Indexed/Property Access Precision

In the indices section, the Int, Double, Other, and Unknown
columns indicate, respectively, that the type of the index, i.e., the
type of i in an expression such as a[i], is known to be an integer, a
double, any other known type, or unknown. Websites tend to have
more unknown index types than both benchmarks and games.

Precision Arithmetic

Test Poly (%) Ratio Unknown (%) Ratio

gmail 46 2.7 32 1.5
googlemaps 38 3.2 23 4.6
facebook 48 3.0 20 1.3
flickr 61 6.1 39 4.9
grooveshark 58 2.8 30 1.4
meebo 36 3.6 28 3.5
reddit 37 1.7 13 1.9
youtube 40 6.7 28 7.0
280slides 76 4.0 93 —
membench50 47 3.6 29 2.9

sunspider 5 — 6 —
v8bench 18 2.6 1 —
kraken 2 — 2 —

angrybirds 90 — 93 —
gameboy 15 1.3 7 1.0
bullet 62 3.9 79 11.3
lights 37 — 63 —
FOTN 28 — 57 —
monalisa 44 — 41 —
ztype 54 6.0 63 7.9

Average 42.1 4.3 37.4 6.0

Figure 11. Type Profiles Without Barriers

4.2.4 Access Site Precision
Efficiently compiling indexed element and property accesses re-
quires knowledge of the kind of object being accessed. This infor-
mation is more specific than the monomorphic/polymorphic dis-
tinction drawn in §4.2.1. Figure 10 shows the fractions of indexed
accesses on arrays and of all property accesses which were opti-
mized based on static knowledge.

In the indexed access section, the Packed column shows the
fraction of operations known to be on packed arrays (§2.5), while
the Array column shows the fraction known to be on arrays not
known to be packed. Indexed operations behave differently on ar-
rays vs. other objects, and avoiding dynamic array checks achieves
some speedup. The Uk column is the fraction of dynamic accesses
on arrays which are not statically known to be on arrays.

Static detection of array operations is very good on all kinds
of sites, with an average of 75.2% of accesses on known packed
arrays and an additional 14.8% on known but possibly not packed
arrays. A few outlier websites are responsible for the great majority
of accesses in the latter category. For example, the V8 Crypto
benchmark contains almost all of the benchmark’s array accesses,
and the arrays used are not known to be packed due to the top down
order in which they are initialized. Still, speed improvements on
this benchmark are very large.

In the property access section of Figure 10, the Def column
shows the fraction of operations which were statically resolved as
definite properties (§2.5), while the PIC column shows the fraction
which were not resolved statically but were matched using a fall-
back mechanism, polymorphic inline caches [14]. The Uk column
is the fraction of operations which were not resolved either stati-
cally or with a PIC and required a call into the VM; this includes
accesses where objects with many different layouts are used, and
accesses on rare kinds of properties such as those with scripted get-
ters or setters.

The Def column gives a measurement of how many times dur-
ing execution dynamic checks were avoided. Since our analysis is
hybrid, we cannot (nor does it make sense to) measure how many

dynamic checks are statically removed, as a site whose dynamic
checks have been removed may have them re-added due to invali-
dation of analysis results.

An average of 39.4% of property accesses were resolved as def-
inite properties, with a much higher average proportion on bench-
marks of 80.3%. The remainder were mostly handled by PICs, with
only 5.5% of accesses requiring a VM call. Together, these suggest
that objects on websites are by and large constructed in a consis-
tent fashion, but that our detection of definite properties needs to
be more robust on object construction patterns seen on websites
but not on benchmarks.

4.2.5 Precision Without Barriers

To test the practical effect of using type barriers to improve preci-
sion, we repeated the above website tests using a build of Firefox
where subset constraints were used in place of barrier constraints,
and type barriers were not used at all (semantic triggers were still
used). Some of the numbers from these runs are shown in Figure 11.

The precision section shows the fraction of indexed and prop-
erty accesses which were inferred as polymorphic, and the arith-
metic section shows the fraction of arithmetic operations where at
least one operand type was unknown. Both sections show the ratio
of the given fraction to the comparable fraction with type barriers
enabled, with entries struck out when the comparable fraction is
near zero. Overall, with type barriers disabled 42.1% of accesses
are polymorphic and 37.4% of arithmetic operations have operands
of unknown type; precision is far worse than with type barriers.

Benchmarks are affected much less than other kinds of sites,
which makes it difficult to measure the practical performance im-
pact of removing barriers. These benchmarks use polymorphic
structures much less than the web at large.

5. Related Work
There is an enormous literature on points-to analysis, JIT compila-
tion, and type inference. We only compare against a few here.

The most relevant work on type inference for JavaScript to the
current work is Logozzo and Venter’s work on rapid atomic type
analysis [16]. Like ours, their analysis is also designed to be used
online in the context of JIT compilation and must be able to pay
for itself. Unlike ours, their analysis is purely static and much more
sophisticated, utilizing a theory of integers to better infer integral
types vs. floating point types. We eschew sophistication in favor of
simplicity and speed. Our evaluation shows that even a much sim-
pler static analysis, when coupled with dynamic checks, performs
very well “in the wild”. Our analysis is more practical: we have
improved handling of what Logozzo and Venter termed “havoc”
statements, such as eval, which make static analysis results im-
precise. As Richards et al. argued in their surveys, real-world use
of eval is pervasive, between 50% and 82% for popular websites
[20, 21].

Other works on type inference for JavaScript are more formal.
The work of Anderson et al. describes a structural object type sys-
tem with subtyping over an idealized subset of JavaScript [7]. As
the properties held by JavaScript objects change dynamically, the
structural type of an object is a flow-sensitive property. Thiemann
and Jensen et al.’s typing frameworks approach this problem by us-
ing recency types [15, 24]. The work of Jensen et al. is in the con-
text of better tooling for JavaScript, and their experiments suggest
that the algorithm is not suitable for online use in a JIT compiler.
Again, these analyses do not perform well in the presence of stati-
cally uncomputable builtin functions such as eval.

Performing static type inference on dynamic languages has been
proposed at least as early as Aiken and Murphy [4]. More related
in spirit to the current work are the works of the the implemen-
tors of the Self language [25]. In implementing type inference for

JavaScript, we faced many challenges similar to what they faced
decades earlier [1, 26]. Agesen outlines the design space for type
inference algorithms along the dimensions of efficiency and preci-
sion. We strived for an algorithm that is both fast and efficient, at
the expense of requiring runtime checks when dealing with com-
plex code.

Tracing JIT compilers [11, 12] have precise information about
the types of expressions, but solely using type feedback limits the
optimizations that can be performed. Reaching peak performance
requires static knowledge about the possible types of heap values.

Agesen and Hölzle compared the static approach of type infer-
ence with the dynamic approach of type feedback and described the
strengths and weaknesses of both [2]. Our system tries to achieve
the best of both worlds. The greatest difficulty in static type in-
ference for polymorphic dynamic languages, whether functional or
object-oriented, is the need to compute both data and control flow
during type inference. We solve this by using runtime information
where static analyses do poorly, e.g. determining the particular field
of a polymorphic receiver or the particular function bound to a vari-
able. Our type barriers may be seen as a type cast in the context of
Glew and Palsberg’s work on method inlining [13].

Framing the type inference problem as a flow problem is a well-
known approach [17, 18]; practical examples include Self’s infer-
encer [3]. Aiken and Wimmers presented general results on type
inference using subset constraints [5]. More recently, Rastogi et al.
has described a gradual type inference algorithm for ActionScript,
an optionally-typed language related to JavaScript [19]. They rec-
ognized that unlike static type systems, hybrid type systems need
not guarantee that every use of a variable be safe for every defi-
nition of that variable. As such, their type inference algorithm is
also encoded as a flow problem. Though their type system itself is
hybrid — it admits the dynamic type — their analysis is static.

Other hybrid approaches to typing exist, such as Cartwright and
Fagan’s soft typing and Taha and Siek’s gradual typing [8, 22].
They have been largely for the purposes of correctness and early
error detection, though soft typing has been successfully used to
eliminate runtime checks [27]. We say these approaches are at least
partially prescriptive, in that they help enforce a typing discipline,
while ours is entirely descriptive, in that we are inferring types only
to help JIT compilation.

6. Conclusion and Future Work
We have described a hybrid type inference algorithm that is both
fast and precise using constraint-based static analysis and runtime
checks. Our production-quality implementation integrated with the
JavaScript JIT compiler inside Firefox has demonstrated the anal-
ysis to be both effective and viable. We have presented compelling
empirical results: the analysis enables generation of much faster
code, and infers precise information on both benchmarks and real
websites.

We hope to look more closely at type barriers in the future with
the aim to reduce their frequency without degrading precision. We
also hope to look at capturing more formally the hybrid nature of
our algorithm.

Acknowledgements. We thank the Mozilla JavaScript team, Alex
Aiken, Dave Herman, Todd Millstein, Jens Palsberg, and Sam
Tobin-Hochstadt for draft reading and helpful discussion.

References
[1] O. Agesen. Constraint-Based Type Inference and Parametric Poly-

morphism, 1994.

[2] O. Agesen and U. Hölzle. Type feedback vs. concrete type infer-
ence: A comparison of optimization techniques for object-oriented
languages. In OOPSLA, pages 91–107, 1995.

[3] O. Agesen, J. Palsberg, and M. I. Schwartzbach. Type Inference of
Self: Analysis of Objects with Dynamic and Multiple Inheritance. In
ECOOP, pages 247–267, 1993.

[4] A. Aiken and B. R. Murphy. Static Type Inference in a Dynamically
Typed Language. In POPL, pages 279–290, 1991.

[5] A. Aiken and E. L. Wimmers. Type Inclusion Constraints and Type
Inference. In FPCA, pages 31–41, 1993.

[6] L. O. Andersen. Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, DIKU, University of Copenhagen,
1994.

[7] C. Anderson, S. Drossopoulou, and P. Giannini. Towards Type Infer-
ence for JavaScript. In ECOOP, pages 428–452, 2005.

[8] R. Cartwright and M. Fagan. Soft Typing. In PLDI, pages 278–292,
1991.

[9] C. Chambers. The Design and Implementation of the SELF Com-
piler, an Optimizing Compiler for Object-Oriented Programming Lan-
guages. PhD thesis, Department of Computer Science, Stanford, 1992.

[10] C. Chambers and D. Ungar. Customization: Optimizing Compiler
Technology for SELF, A Dynamically-Typed Object-Oriented Pro-
gramming Language. In PLDI, 1989.

[11] M. Chang, E. W. Smith, R. Reitmaier, M. Bebenita, A. Gal, C. Wim-
mer, B. Eich, and M. Franz. Tracing for Web 3.0: Trace Compilation
for the Next Generation Web Applications. In VEE, pages 71–80,
2009.

[12] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ru-
derman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and
M. Franz. Trace-based just-in-time type specialization for dynamic
languages. In PLDI, pages 465–478, 2009.

[13] N. Glew and J. Palsberg. Type-Safe Method Inlining. In ECOOP,
pages 525–544, 2002.

[14] U. Hölzle, C. Chambers, and D. Ungar. Optimizing Dynamically-
Typed Object-Oriented Languages With Polymorphic Inline Caches.
In ECOOP, pages 21–38, 1991.

[15] S. H. Jensen, A. Møller, and P. Thiemann. Type Analysis for Java-
Script. In SAS, pages 238–255, 2009.

[16] F. Logozzo and H. Venter. RATA: Rapid Atomic Type Analysis by
Abstract Interpretation. Application to JavaScript Optimization. In
CC, pages 66–83, 2010.

[17] N. Oxhøj, J. Palsberg, and M. I. Schwartzbach. Making Type Infer-
ence Practical. In ECOOP, 1992.

[18] J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Inference.
In OOPSLA, 1991.

[19] A. Rastogi, A. Chaudhuri, and B. Homer. The Ins and Outs of Gradual
Type Inference. In POPL, pages 481–494, 2012.

[20] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the
dynamic behavior of JavaScript programs. In PLDI, pages 1–12, 2010.

[21] G. Richards, C. Hammer, B. Burg, and J. Vitek. The Eval That Men Do
– A Large-Scale Study of the Use of Eval in JavaScript Applications.
In ECOOP, pages 52–78, 2011.

[22] J. G. Siek and W. Taha. Gradual Typing for Objects. In ECOOP, 2007.
[23] M. Sridharan and S. J. Fink. The Complexity of Andersen’s Analysis

in Practice. In SAS, pages 205–221, 2009.
[24] P. Thiemann. Towards a Type System for Analyzing JavaScript Pro-

grams. In ESOP, pages 408–422, 2005.
[25] D. Ungar and R. B. Smith. Self: The Power of Simplicity. In OOPSLA,

pages 227–242, 1987.
[26] D. Ungar, R. B. Smith, C. Chambers, and U. Hölzle. Object, Message,

and Performance: How they Coexist in Self. Computer, 25:53–64,
October 1992. ISSN 0018-9162.

[27] A. K. Wright and R. Cartwright. A Practical Soft Type System for
Scheme. ACM Trans. Program. Lang. Syst., 19(1):87–152, 1997.

