The Essence of Compiling with Traces

Shu-yu Guo

Jens Palsberg

UCLA Computer Science Department
University of California, Los Angeles, USA

{shu,palsberg}@cs.ucla.edu

Abstract

The technique of trace-based just-in-time compilation wa-
duced by Bala et al. and was further developed by Gal et al. It
currently enjoys success in Mozilla Firefox’s JavaScripgiae. A
trace-based JIT compiler leverages run-time profiling tonoige
frequently-executed paths while enabling the optimizedecto
“bail out” to the original code when the path has been inzbd.
This optimization strategy differs from those of other J6hwilers
and opens the question which trace optimizations are sounih
this paper we present a framework for reasoning about thedsou
ness of trace optimizations, and we show that some traditimpti-
mization techniques are sound when used in a trace comiliés w
others are unsound. The converse is also true: some traogzpt
tions are sound when used in a traditional compiler whileeth
are unsound. So, traditional and trace optimizations forcoiinpa-
rable sets. Our setting is an imperative calculus for whiaking

is explicitly spelled out in the semantics. We define optatian
soundness via a notion of bisimulation, and we show thatdoun
optimizations lead to confluence and determinacy of stores.

Categories and Subject Descriptors D.2.4 [Program Verifica-
tion]: Correctness proofs, formal methods; D.3Rrdcessorp
Compilers; F.3.2%emantics of Programming LanguapeSper-
ational semantics

General Terms Languages, Theory

Keywords just-in-time compilation, compiler correctness, bisim-
ulation

1. Introduction

With the advent of “Web 2.0”, the web browser has become a plat
form that delivers rich interactive applications. The teglogy cen-
tral to this transformation of the web browser is JavaScidava-
Scipt's dynamic nature has since then become a performantee b

tleneck. The performance of dynamic languages is much worse

than statically typed languages, and JavaScript is no ¢ecep
Moreover, traditional just-in-time (JIT) compilation tatiques de-
signed for static, typed languages are ill-fitted for Javgic

The work of Bala et al. [1] was adapted as a novel JIT compi-
lation technique called trace compilation [2—4, 7, 8]. Acedbased
JIT compiler uses run-time profiling to approximate the “rete-

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesatrmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’11, January 26-28, 2011, Austin, Texas, USA.
Copyright(© 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

cution paths (loops) in the program and compiles only theghe

[4, 7, 8]. The rarely executed bits of code are interpretdz: ifiea

is quite intuitive: if there is a repeatedly executed secid the
code, that section should be top priority for compiling tdive
code. For example, a micro-blogging web application miglket
many rows of data and transform them into a news feed format.
This loop would be where the program spends the majoritysof it
time; a trace-enabled JIT detects that this loop is a hotutiet
path and compiles it to native code.

Tracing JIT compilers are amenable to JavaScript and enjoy
their greatest success in Mozilla Firefox’s JavaScriptrea(Trace-
Monkey). It is available in versions 3.5 and greater, and iN&z
metrics report that approximately 94 million people in therla
are using the tracing JIT [13].

Tracing JIT compilers differ greatly in technique from many
other JIT techniques. It opens the following question:

Which trace optimizations are sound?

We distill the essence of trace compilation to a simple imper
tive calculus with an operational semantics. This allowsoufor-
mally investigate notions of correctness of trace-bas&dcdm-
pilers and the properties that trace optimizations mussfyato
be sound. We present a bisimulation-based soundnessanifer
trace optimizations, and we prove a determinism theorenether
one traces or not, the final store will be the same.

Our framework is modular in two ways. First, an optimization
designer needs only prove that a given optimization satisfig
correctness criterion; the determinism theorem thenvaldSec-
ond, the composition of two sound optimizations is itselfirs.
We leverage the first kind of modularity to easily prove soexs
of the folding of free loop variables and dead branch eliriama
Proving optimizations unsound is equally simple. We shoat th
dead store elimination is unsound with an easy-to-chechteoex-
ample. Readers can easily proceed like we did to prove additi
trace optimizations sound.

Our proof of the determinism theorem has the following cears
steps. First we prove that an unoptimized, recorded tradheof
loop is “behaviorally correct”, or bisimilar, to the origihloop. We
then prove that the original program with the new trace lstitt
in place of the old loop is bisimilar to the original prografrhis
then sets the stage for sound optimizations: sound optiioimare
those that do not invalidate this behavioral correctnessagiee
had from bisimilarity. Finally, we put the pieces togethed grove
confluence and determinacy of stores via a diamond lemma and a
strip lemma.

Our framework shows, surprisingly, that “traditional” wae
function optimizations and tracing JIT optimizatiods not stand
in a subset relation in either directiorin one direction, it is clear

1The exact average of daily usage from January 1, 2010 ufyitl) 2010
of versions 3.5, 3.6, 3.7, and 4.0 is 93,977,941.

that traditional optimizations are not subsumed by traderopa-
tions. Informally, trace optimizations are not obliged ®dorrect
for all possible executions and contexts. They are obligetet
correct only for aparticular execution and garticular context.
For instance, in the paper we prove folding of variables déhatnot
assigned to be sound for tracing but unsound in general ia-a tr
ditional setting. In the other direction, trace optimipat are also
not subsumed by traditional optimizations. The reason Har is
more subtle: the domain of trace optimizations is restti¢teonly
the trace. The code surrounding the trace is unavailablect@p-
timizer. Traditional optimizations, on the other hand, prizy to
both the prefix and the suffix of the trace in that their domiain
the entire procedure. In other words, those optimizati@amsprove
properties on entire procedures while trace optimizaticareot.
For one, whole-function optimizations know that their lbeari-
ables are dead after the function exits. Trace optimizat@@mnot
make the same assumption about their local variables hfid¢rdace
exits. In the paper we show dead store elimination to be urtses
a trace optimization.

To expand upon the incomparability of the two sets of opti-
mizations, it is illuminating to spell out the differencestlveen our
work and recent prominent works in compiler correctness 121
The program equivalence condition (Lemma 1) found in Ladey e
al. [11] basically states classical bisimilarity as the dition un-
der which to judge the correctness of optimizations. Anrojzed
program must be bisimilar to the original and their respectinal
stores must contain the same values for all variables. Inftaene-
work, optimizations are formulated as rewrite rules witthescon-
ditions expressed in temporal logic. Despite this diffesiwe can
make the following fruitful comparisons. We write ~ n for o
to mean that the programn is bisimilar ton when their initial
stores arer. Suppose there is an optimization functiéh Their
correctness criterion describes traditional optimizatiand is ex-
tensional: for allp, p = O(p) for all stores Our correctness crite-
rion describes tracing optimizations and is intensionap@®se the
programp decomposes into two componenis (the traced loop)
andk (the rest of the program). The criterion is then: forallk, o,

w k = O(w, o) k for o. Note how our optimization function takes
a stater in addition to a program to produce an optimized program
guaranteed to be correct when the initial store is fixed tohlae t
store and the rest of the program is fixed tokbeThis succinctly
captures that trace optimizations may not be straightfotiyaised

in a classical setting.

The correctness criterion in Chambers et al. [12] raiseswpee
differences between classical optimization soundnessrand op-
timization soundness. At the heart of their formulation ofisd-
ness is contextual equivalence. However, note that we haide s
that trace optimization correctness is intensionalizeal particular
computation suffix. This necessarily precludes trace aptition
correctness from being contextual equivalence. Classjatéhiza-
tions speculate about the behavior of a program to subsstitpt
timized portions for the original portionseforeexecution. Trace
optimizations, on the other hand, know exactly the behafgor
which they need to optimize and substitute optimized postaur-
ing execution. This departure also highlights that the inputaoe
optimizations is mercurial: we do not knawpriori what loops are
hot. The input to classical optimization on the other hanfilxid.

In Chambers et al. and Lacey et al. [11, 12], this input is the e
tire program. As mentioned before, the domains of the twalkin
of optimizations are simply different.

The remainder of this paper is organized as follows. In eacti
2 we introduce our language, its operational semantics¢descdss
certain properties of compiling with traces. In section 3 shew
that the operational semantics of our language is corrett weak
bisimulation and relate the results to confluence. In sectiave

explore various optimizations, both provably correct anavably
incorrect, pluggable into the framework. In section 5 wecdss
related work. Section 6 concludes.

2. Compiling with Traces

What is essential to the trace compilation technique? Weadtfes
must our calculus contain? At its core, it is a method of cdimgi
often-executed loops. We must therefore have loops. Mazeifsp
ically, it is a technique of recording loop bodies at runi@nd
optimizing them. The second essential part must thus behilitya
to record execution. What is optimized, then, is not the téxhe
loop but a run-time execution patroughthe loop. In other words,
we are optimizing some fixed execution. So, when the exatutio
diverges from the recorded path, there must exist a meahaois
return us to the original program. The third and final commbne
is this bail-out mechanism. In the literature of trace cdatfuin,
these are called side-exits [8].

We forego modeling the many other features of the technique
that exist in implementations. For instance, we shall nodieh¢he
heuristics in how one actually detects a hot path of exegutie
will simply build in the ability to record a path of executiolonde-
terministically. This nondeterminism will be realized \aaerlap-
ping reduction rules. Nor shall we model implementatioradet
such as trace trees and their interactions [7]. We aim to Keep
calculus minimal yet high-level, safe—and even desiralfta-hu-
man consumption.

2.1 The Language and Its Baseline Execution

We first present the syntax and small-step operational sérador
a simple imperative language with two of the three esseintipie-
dients: loops and the ability to “bail out” modeled by conttions.

The syntax of our language, inspired by the calculus present
in Moll [9], is shown in figure 1. Concretely, traces are a sibs
of normal statements. They are meant to be straightlinéosect
of code with side-exits, so there are only no-ops, assigtsnand
side-exits.

We usez to range over variableg,to range over non-negative
integersp, p to range over stores, atign, n, k, s, p to range over
statements throughout the rest of the paper.

The baseline transition rules are shown in figure 2. Assume
@ is the “real” addition operator on integers. We use a labeled
transition system where labels correspond to store updsltes
assume the reader is familiar with such systems as they aceinis
the literature of concurrency [14]. The only observabl@siaons
are store updates, which are labeled by the “store delt&'btAer
transitions are silent, labeled and are unobservable. The subscript
B denotes baseline transition rules. The subsciiptienotes a
strict subset of the baseline transition rules that will beduin the
upcoming proofs. The subscriptdenotes tracing transition rules.
The baseline rules in figure 2 are common to both.

The baseline rules do the usual thinBsilTrue is the rule that
applies continuations in thbkails. It says to clobber the current
reduct with the packaged continuatien

2.2 Recording Traces

We extend the baseline execution with the ability to recoadds.
The set of baseline rules is a proper subset of the tracires,rul
i.e.— pC— 7. The abstract syntax is the same between the two
languages. The additional transition rules are shown indigu

Starting Traces We start a trace at the beginning ofvaile loop.
For technical reasons for the proof of correctness, we dastien
we have already unfolded at least one iteration of the loop.
Also note thafTrace puts the reduction rules necording mode
which is represented syntactically as 4-tuples. The corapisrare,

ex=n|xz+1

bu=x=0

|z #0

w := while bdo s

su=¢€lcs

cu=skip; |z:=¢; |w]if bthens|bail bto s

tu=c€l|ce t

ct n=skip; |z :=e; | bailbtos

expressions

boolean expressions
loops

statements
commands

traces
recorded commands

70 ={ rye1

Figure 1. Syntax of the Simple Imperative Language and Traces

0 == xz/i|z/true | x/false

true
ife=n ..\ _) false
ife=ax-+1) =1 true
false

ifbisz=0A0(x)=0
ifbisz=0A0(x)#0
ifbisz A#0Ao(x)#0
ifbistA0ANo(x)=0

store updates

an=T|0 actions
(0,2 = e;k) 1.4 (olx/5(e)], k) wheres = z/é(e) (Assign)
(0, skip; k) —=1,5,4 (0, k) (Seq)
(o, (if bthen s) k) —s7.5,4 (0, k) if 5(b) = false (IfFalse)
(o,(ifbthens) k) 154 (0,5 k) if &(b) = true (If True)
(o, (while bdo s) k) —=7,5,4 {0, (if bthen (s while b do s)) k) (While)
(o, (bail bto s) k) —=71,5,.4 (0, k) if 6(b) = false (BailFalse)
(o,(bail bto s) k) ——=7.5 (o,s) if 6(b) =true (BailTrue)
Figure 2. Shared Transition Rules

ﬂb:{ x=0 !fb!sx#o

z#£0 ifbisz=0
(o, (if bthen (s (while bdo 5))) k) —=7 (o, (while bdo s) k, ¢, s (while bdo s) k) if 6(b) = true (Trace)
(0, kw,t,x :=e;k) LR (oz/5(e)], kw,t (z :=e;),k) whered =z/5(e) (RecordAssign)
(0, kw, t,sKip; k) —7 (0, kw, t (SKip;), k) (RecordSeq)
(0, kuw, £, (if bthen s) k) 57 (0, kuw, ¢ (bail bto (s k), k) if 6(b) = false (RecordlfFalse)
(0, ku, t,(ifbthens) k) 7 (0, ky,t (bail =bto k),s k) if 6(b) = true (RecordIfTrue)
(0, kw, t, (While bdo s) k) —71 (0, kw, t (skip;), (if bthen (s while b do s)) k) if k., # (whilebdos) & (RecordWhile)
(0, kuw, t, (While b do s) k) 37 (o, O(while bdot, o) k) if ki = (while bdo s) k (Stitch)
(0,kw, t, k) 57 (o' k) if (0, k) 7 (0", kY Akw # K (Abort)

Figure 3. Tracing Transition Rules

in order, the store, the stopping point of the trace, theetthas far,
and the current program being reduced.

Recording Traces The recording rules record one command at
a time and concatenate it to the end of the trace. Concabanati
is simple juxtaposition. The trace itself is a straightlgeztion of
code, so we install side-exits (pieces of code that jump back
untraced code when the condition we traced no longer holdshw
we record conditionals.

To ease the task of proving correctneRscordWhile appends
askip to the trace while unrolling the loop. Its side conditionas t
ensure that we are recording emmer loop inside the current loop
we are tracing, and that we have not come full circle and fedsh
tracing. The work for finishing up a trace is doneSiitch, whose
side condition is mutually exclusive with that BecordWhile.

Ending Well-Behaved Traces We end the trace and stitch it back
into the program usingtitch when we finish tracing the body
of the loop. We know we have finished when we come back to
reducing the same loop that started the trace.

We “compile” the loop that was traced into the same langdage.
The actual optimization is immaterial to the semantics; sgime
that there is a sound optimization functi@n : (Statementx
Storg — StatementWhat soundness entails here will be made
precise when we investigate correctness. Informally, doass
means that the output of tiiéfunction “does the same thing” as the
original code, as far as observable behavior (store updabes.

Ending Badly-Behaved Traces We are not guaranteed to finish
tracing the body of the loop. That loop body might never teate!
Consider the following example; assumenever changesto 0.

1 a:=1;

2 b:=1;

3 while a # 0do

4 S1

5 while b # 0 do
6 S2

If we start tracing theouter loop, once we start executing the
inner loop we will never finish the outer loop bodgnd thus never
finish tracing. Implementations of trace compilation, thenst use
heuristics to end the trace if it is continuing on for too long

In our semantics, we model this by introducing another nende
terministic rule that prematurely stops the trad&prt. This rule
shares the same premises wéth Record rules, where “ " is a
wildcard. Note that there are no axioms for recordirag s—what
this means is that instead of the semantics getting stuch whiag
to trace a trace, we abort the trace (that is, we do not modikhi
order tracing). Also note thaibort’s® side condition is mutually
exclusive withStitch, which is intuitively the “good” situation of a
successful trace. In this way the rule models the semarttioaib
ing out of tracing mode for all “bad” situations.

2.3 Example Trace Recording

To help illustrate the tracing rules and to build some caecre
intuition, consider the following contrived example.

Example Input

1 z:=0;
2 while z =0do
3 y :=0;

2Note that this is a simplification in our model. In actual tracJITs, the
compiled code is in machine language.

3The rule is modeled as presented instead of the viable atteenof
(0, kw,t, k) —7 (0, k) if ky # k for a cleaner proof of correctness.

4 while y = 0do
5 y =1,

6 z:=1;

7 b:=a-+1;

There are two loops; the inner loop only iterates once. Thiabke

a is computed at some earlier point in the program. We giveex rul
by-rule walkthrough of tracing the outer loop. We build up trace

in tandem with our walking through of the reduction rulesgtea
shippet that th&®ecord rules append to the trace is displayed one
by one.

To start, line 1 of the input is matched Bysign, so we reduce
by Assign. Line 2 is awhile loop, which we reduce bwhile. While
converts the loop into aifl statement testing the conditian= 0.
This is indeed true by how we mutated the store in line 1, soame ¢
reduce bylfTrue or Trace. In the interest of demonstrating tracing,
we reduce byTrace. The trace built thus far is empty, er We've
only entered recording mode, but we haven't actually reet@hy
commands yet.

Line 3 in the input is an assignment, which is matched by
RecordAssign. RecordAssign appends the assignment itself onto
the trace:

Example Trace
1 y:=0;

Line 4 in the input is the inner loop, and we will now see how the
tracing rules deal with recording loops. The loop itselfl\iilst
reduce to arnf via RecordWhile, which appends a no-ogkip; to

the trace. In reducing the resultiifg we are testing the condition

y = 0. Itis true, so we reduce usiriRecordlfTrue. The result is

that we append a side-exit adail to the trace. The computation
that would have been executédd the condition been falsgets
packaged up as a continuation and gets put into the body of the
bail (shown indented in the listing):

2 skip;

3 bail y#0to

4 z:=1;

5 b:=a+1;

6 while x = 0do

7 y:=0;

8 while y = 0do
9 y:=1;

10 z:=1;

11 b:=a+1;

Now that we have installed the side-exit for entering inte ittmer
loop, we trace the body of the inner loop as straightline code
Line 5 in the input is another assignment, which we recordgisi
RecordAssign.

12 y:=1;

After the body of the inner loop we attempt to reduce the
next iteration of that loop. Again, the loop will first redute an
if by RecordWhile. This appends akip;. Unlike the last time,
however, the conditioy = 0 is now false, so we instead reduce
usingRecordIfFalse. We append another side-exit as before, but the
packaged continuation is different. Since the conditios fase in
the actual execution, we need to include the statement thaldw
have been executed if the condition were true. After thaestant
we package the rest of the iteration of the outer loop andrapjte

13 skip;

14 bail y=0to

15 y:=1,

16 while y = 0do

FV : Statement— Variables
FV(s)={z | zisfreeins}

F : ((Expressiont- Statement- Commangl x Storex V) — Statement

n ife=n
F(e,o,v)=4¢ o(z)®1l fe=z+1Azev
e fe=xz+1Az&v

s ifs=e
Per) ={ S Povo 1o en

[z:=F(e,o,v) fc=xz:=e
Fle,0,v) = { ¢ otherwise
O : (Statemenk Storex V) — Statement

[whilebdo F(si,0, FV(s1)) if s — while b do s,
O(s,0) = { s otherwise

Figure 4. Variable FoldingO

17 yi=1 9 b = 42;

ig g:.;i’—&— 1: The main benefit of run-time optimization is that we can be
20 while :’O do more aggressive than with ahead-of-time optimization.eHee

21 y =0 presented a simple conservative folding of free loop véembrhe

29 while y —0do idea is that free variables in the loop bodycan be treatedrestants

23 yi=1; and folded until we break out of the loop. We cannot be so bt w
24 b1 a static version of this kind of folding, as we can only do soéf

25 b= a’+ 1 know that the variables we want to fold are constants for tiieety

_)) _ of program execution. Here, however, we only need to know tha
Finally, we applyRecordAssign twice to lines 6-7 and append the the variable’s value does not changil the loop is finished
assignments to the trace.

26 z:=1; 3. Correctness

21 b=a+l] What does it mean for a trace to be correct? First, corresiighe
Having successfully traced an iteration of the loop, we neduce traced code is behavioral correctness—the trace has thedgaime
by Stitch to stitch the trace back into the program using the identity thing” as the original code. Attempting to prove confluentéhe
as theO function. Abbreviating the continuations for the sidetexi ~ program text such as in Pfenning [16] is unfruitful, as there no

ask;, the final stitched traced loop is as follows. guarantees in trace compilation of the traced code convgiapck
to the same text as the original program. In a reactive ugerface,
Abbreviated Stitched and Traced Example Loop for instance, we might trace-compile many inner loops, dubé
1 while z =0do compiled inner loops might execute forever, waiting forriegut.
2 y = 0; But even in those cases of infinite execution we still wanttson
3 skip; about correctness. The need for infinite executions sugtestool
4 bail y # 010 k1 of bisimilarity.
5 y = 1; Second, correctness of the traced code is intensionalaterre
6 skip; ness. Unlike ahead-of-time compiler correctness, we dasap
7 bail y = 0to ko that an optimized trace is observationally equivalent, as the
8 z:=1; same sequence of observable reductions, to the origingl iloo
9 b:=a+1; the traditional, extensional sense. Specifically, an dgtohtrace
neednot be observationally equivalent to the original loop under
2.4 ExampleO all stores. Consider the following version of our little exale:
We have seen the output of tracing, but we obviously want to do 1 z:=0;
more than that. We want to optimize. Consider optimizatioowm 2 while z =0do
in figure 4 that folds away variables that we never assigngiaé 3 b:=a+1;

a traced loop. First we define a function that calculates tree*

(in the sense of never-assigned-to) variables of a stateriida
assumed to be defined in the usual way. Next we define a helper
function F' that does the actual optimizatioW. is the set of free

A reasonable trace-based optimization i~ 41, as we have seen,
would be to replace the loop body with:= 42. But this code is

41n our simple model, the trace is effectively discardedrafie loop exits.

variables. Finally theD function is just a wrapper arounkl that There is no way to re-enter a traced loop once it exits. Thimtshe case
calculates and passes in the free variables. in practice, where constructs such as methods allow cothpiéees to be
If we apply it to our running example whete— 41, we fold called multiple times. In those cases the tracing JIT hasdtbia more

the assignment tbon line 9 of the abbreviated stitch example: guards and side-exits to guard the folded values. We onsitcthinplexity.

most definitely not observationally equivalent to the aradi the
original has a free variable;, and the optimized codg := 42
does not. Side-exits are also problematic. How do we ensate t
we jump back to the right place in the original code?

We retain the familiar notion of observational equivale et
parameterize it over stores and computation suffixes. Narael
trace is correct if it is observationally equivalent to thegmal
loop for the store that the original loop is currently reducingder
andfor the rest of the program that the original loop would have
reduced under

To formalize these intuitions, we model correctness usiten-
sionalized bisimulations over stores. Intensionalizimg particular
suffix will be made formal in the definition @ soundness in sec-
tion 3.3. Bisimulation techniques see popular use in pocakuli
[14]. There is also existing work in the analysis and comess
proofs of program transformation [6, 21, 22].

The definitions here are built upon, but slightly differerarh,
the standard notions found in the concurrency literatudg, [&s
they are defined over a store. Observational equivalencebals
comes formally defined as the notion of bisimilarity. Let #et of
labels be defined as follows.

Act= {¢ | 0 is a store updafeu {7}
Definition. If » € Act", then+ is the sequence whereby all
occurrences of are removed.

Definition. If r = as - - - an € Act’, we writemn == m’ to mean

aq Qn,

YIS NN LIS NI

That is, there may be any number of intervening silent transi

tions between the observable sequences. In this partisysaem,
the primary observable entity is the store itself, so theifive

Before stating the main lemma, we note that all nondetesmnini
tic rules in our system step to the same store. We prove ttgs la
in lemma 3.7. For simplicity in stating the main lemma, wesyn
say that the two branching stores are always the same.

We are now ready to state the main lemma. In the literature,
diamond lemmas are usually single diamonds. The tracelaalcu
however, has a modal flavor with 2-tuples as one mode andldstup
as the other mode. As such, our calculus has six diamonds up to
symmetry.

Lemma 3.2(Diamond Lemma) All of the following hold. For di-
amonds 4—6{p, k., t, p) is well-formed, a notion we will expound
upon in section 3.1.

LIER: {p,p) 7 (o,
m r~7 n foro.

m)andR’ : (p,p) —>r (o, n), then

(0, D)

ARy

2.ER : {p,p) =1 (0,kw,t,m) and R’ : (p,p) 7
(0, ki, t',n), then(ky,, t, m) r~r (ki,,t' n) foro.
(p:p)
(0, kw,t,m) (o, ki, t',n)
3. R {p,p) o7 (o,m)andR’ : {p,p) —=1 (0, kw,t,n),

thenm r=r (kw,t,n) for o.

meaning of a program becomes the sequence of store updates it

performs.

We only concern ourselves with closed program-store pairs i

this paper, where the definition ofosedis as follows.

Definition. For a storer and a programn, we saym is o-closed
if for all variables that appear im, () is defined.

For the rest of the paper, when we say “for any store” or “for al
stores”, we mean for all stores that form closed programegiairs
with the programs under consideration.

Definition (Bisimulation) A bisimulationfor two reduction rela-
tions X,Y is a relationR such thatR (¢, m, n) implies
1. Whenevefo, m) —x (o', m’) then, for some?/,
(o,n) =y (¢/,n') andR(o’,m/, n')
2. Whenevelo,n) sy (a’,n’) then, for somen’,
(o,m) =5x (o, m’) andR(c’, m/, n')

In the above definition we abuse notation andietn’, n, and

n/ range over both statements and triples of statements. $hat i

since it does not add to the discussion to distinguish betvizee
tuples and 4-tuples in the definition, we use a single meitiar
to range over both.

The traditional notion of bisimilarity is a special case bfst
one: two programs are bisimilar in the traditional sensééfytare
bisimilar for all stores.

Definition. m is said to bebisimilar to n under reduction relations
X, Y for astorer, writtenm x=y n for o, if R(c, m,n) for some
bisimulationR on X, Y. In other words,

x~y = J{R | Ris abisimulation forX, Y}

Lemma 3.1. Bisimilarity is an equivalence relation.

/\

—rr—— (0, kuw, t,)

4. 1f R : (p,kw,t,p) —>1 {o,m)andR’ : (
(o,n), thenm TRT nforo—.

P kw7t7p> —T

p7 w7t p

X

5 fR: {p,kuw,t,p) ——1 {0, Ky, t',m)andR’ : {p, kw,t,p) —>r
(o, ki, t" ,m), then(k,,, t',m) r=~r (ki;,t" n) foro.
p7 1U7t7p
(o,ky,t',m) o, ky, t", n)
6. If R: {p,kw,t,p) —>7 (o,m)andR’ : (p,kw,t,p) —>71
(0, ky, t',n), thenm rap (k,,t',n) for o.
p7 w7t p

0 kuﬂ s

This lemma says that should execution branch into two bes)ch
both branches will do the same thing, at least observationak
aim to use the main lemma to arrive at a more familiar place: co
fluence of stores, namely corollary 3.10.

The rest of this section is organized as follows. Section 3.1
introduces the idea of well-formedness for the 4-tuplesther
tracing rules. Section 3.2 introduces the correctnessrimit of the
unoptimized trace. Section 3.3 proves the main lemma. &est#é
explores the relationship between confluence and our biation
result.

Many proofs in this section are omitted for brevity. The rerad
may find them in the full version of the paperhattp: //www.cs.
ucla.edu/~palsberg/paper/poplil.pdf.

3.1 Well-Formedness of 4-Tuples

When the calculus decides to initiate a trace, it steps tonéigue
ration in the shape of a 4-tuple. The four components arerderp
the store, the point in the original code when we startedrigac
the trace so far, and the statement currently being redinsidall
4-tuples are created equal, however, as not all 4-tuplesvalie
formed Intuitively, well-formedness is something like an incre-
mental version of correctness. Only well-formed 4-tuplesntu-
ally become fully correct unoptimized traces. Thus, we watd
be an invariant of the computation.

Well-formedness is a tight and intricate relationship kegwthe
original loop, the trace thus far, and the current redudarinally,
we need the trace thus far to be a recording of all the stepshtaa
original loop took just before it reached the current redBetfore
we formally define well-formedness, we formalize what it mea
to be a “trace thus far”.

Definition (Partial Trace Relation) A partial trace relationis a
relation7” such that7 (o, t,1) implies that whenevefo, t) —p
(o', ') then, for somé’, (0,1} 35 (o’,1') and

1. If t stepped byBailTrue, t' =1’
2. OtherwiseT (o, t',1")

The constituents are as followss the trace andlis the original
code. Recall that bothand! are just statements. The formalization
is a variation on the standard simulation relation and captthe
two properties that a partially constructed trace inteilinsatisfies.
First, BailTrue models jumping back to the original code, so we
expect the descendants to be exactly equal. Second, thal part
trace ispartial, so it can terminate before the original code does,
signifying that the rest has not yet been traced.

Definition. We call¢ apartial traceto for a stores, writtent 3 [
for o, if T(o,t,1) for some partial trace relatiop. In other words,

== U{T| T is a partial trace relatign

For the definition of well-formedness and subsequent lemmas
we will be working with the reduction relatiod, which we have
not used yet, as well as a notion of being “stuck”. Recall that
reduction relatiod = B \ {BailTrue}.

Definition. For a reduction relation, we say a configuration
(o, m) is not X-stuckiff m = € or (o,m) =x (o', m’) for
somes’, m’.

Definition (Well-Formedness) A 4-tuple (oo, kw,t,m) is well-
formediff all the following hold.

1. kw = (Whl'e bo do lo) ko
2. For allo, either

(0,t) =4 (0',€) and(o, lo ku) —%4 (0',m)

or for somet’,
(o,t) —% (¢”,¢') andt’ is A-stuck but notB-stuck
3. Foralle, t 3 lo kv for o.

This property formalizes the invariant we wish computation
to preserve. Firstk,, must be the loop where we started tracing.
Second, the tracemust do one of two things. It must either “go far
enough” by terminating in the same reduction sequence tdit b
of the original loop undergoes to reduce to the currentistat,m,
or it must eventually step to some descendant that can odlicee
by BailTrue. Third, ¢ must be a partial trace to the original loop for
all stores.

We now prove that the reduction relati@hpreserves this in-
variant. We will do this in two steps. First, we prove that thee-
ing rules themselves—the rules that step from a 4-tuple oohen
4-tuple—preserve well-formedness.

Lemma 3.3. Let p = (00, kw,t,m). If p is well-formed and
p 7 p’ such thap' is a 4-tuple, thep’ is also well-formed.

Proof. The first conjunct holds trivially because no rules change
k., and we proceed to prove the next two conjuncts together by
case analysis on the structure of the reduction relation. a

Second, we prove that whenever we initiate a trace—whenever
we step from a 2-tuple to a 4-tuple—the resulting 4-tuple él-w
formed.

Lemma 3.4. If {(o0,m) 1 p’ wherep’ is a 4-tuple, theny’ is
well-formed.

Proof. By inversion the only rule that results in a 4-tupléeTisce.
Letw = while b do s. We have

(o, (if bthen (s w)) k) =7 (o, wk, €, s wk)

The first two conjuncts are clearly satisfied. It remains tovpr
conjunct 3, that 3 s w k for all o. It suffices to exhibit a partial
trace relatior7” such that for alb, 7 (o, €, s w k). Sincet = ¢, we
exhibit the empty relatiofi as one such. O

Lemmas 3.3 and 3.4 lead us to a more general lemma about
the transitive, reflexive closure of tHE reduction relation. This
lemma is not used in the rest of the section, but does cleanyay
that well-formedness is a property preserved by computatiour
calculus.

Lemma 3.5. If (o, m) —% p’ wherep' is a 4-tuple, then’ is
well-formed.
3.2 Correctness of the Unoptimized Trace

Recall that the intuition for well-formedness is that it is iacre-
mental correctness. With it we can now build up a bisimutatio
relation®

Lemma 3.6 (Stitch Lemma) For somet, letw = while by do [
andw’ = while by do¢. If for somek, ¢ 3 lo w k for all o and (*)
holds oft, lo w k, o then,w’ k p~p w k for all o.

(*) For allo, either

(o,t) =% (o, ey and (o, lo w k) —% (o', w k)

5The unoptimized trace is in fact strongly bisimilar to theigoral

code. Since we are simply recording some execution path eomffor-
command, it shouldn’t be surprising that the resultingdraexactly equiv-
alent to the original path. In the interest of less mechanégsm since
weak bisimilarity subsumes strong bisimilarity, we wiltelttly prove weak
bisimilarity.

or for somet’,
(o,t) —% (¢”,¢') andt’ is A-stuck but notB-stuck

This lemma is the correctness property we want to express of

unoptimized traces. In prose, is the original loop, andy’ is the
new loop with the trace stitched in. Theg o w k for all o and (*)
conditions are what hold df Io w k, o per well-formedness at the
point of stitching.

The lemma says once we come full circle and stitch the recorde
trace into the original program, that trace is actually eajeint to
the original loop. The reader should bear in mind that thiaris
almost extensional equivalence, a stronger notion thamévnal
equivalence. The insight here is since we have proven a neere r
strictive property than we need, we can relax it. For fruitpti-
mization we need to make the relation larger, relaxing estteral
bisimilarity to the intensional version.

Proof. By exhibition of a bisimulation relatiolR under the rela-
tions B, B such thatR (o, w’ k, w k) for all o. O

3.3 Proof of the Diamond Lemma

With the tool of bisimilarity under our belt, we can now make
precise the notion of the soundness@f This definition will be
crucial for the proof of the diamond lemma.

Definition (O-Soundness) An O function is soundiff for any
w,w’, k,o suchthat’ k p~p w kforall storesO(w’, o) k p~p
w k foro.

Proof of the diamond lemmaf R andR’ are the same, then we are
done asn = n or {ky,t,n) = (ky,t,n'). It is straightforward

to verify that R = R’ for diamonds 1, 2, 4, and 5, which are
deterministic, so we only need to prove diamonds 3 and 6. \We ca
rewrite these diamonds more precisely below.

3. The nondeterministic rules alffrue and Trace. We havemn =
n by inversion. Further, by lemma 3.4, k.,,t,n) is well-
formed.

If R: (p,p) 37 (0,m)andR’
thenm r=r (kw,t,n) for o.

: <p7p> i>T <G7 kw7t7n>’

Trace

<U7 kw7 t7 ’I’L>

6. The nondeterministic rules aRecord and Abort. We have
kv = k., andm = n by inversion. Similarly, by lemma 3.3
(0, kw,t',n) is well-formed.

If R: (p,w,t,p) —r {o,m)andR’ : {p, k.
(0, ki, t',n), thenm rap (ki t',n) for o.

7t7p> —T

(0, kw, t,p)

Abort Record

okw,t n)

To show that r~7 holds for both diamonds, it suffices to
exhibit a bisimulation relatiorik under the reductiong’, T' such
thatR (o, m, (kw,t,n)) andR (o, m, (kw,t',n)) hold.

We claim the following relation is a bisimulation for any
My Ny Uy Ky, K, t, 0.
R ={(o,m,n)

U {(07 m, <k1/7 u, n>)

| m p~p nforo}
| m =g n for o and

(0, kv, u, n) is well-formed}
| m =g n for o and

(0, kw,t,m) is well-formed}

U{(o, (kw,t,m),n)
The rest is omitted for brevity.

3.4 From Bisimulation to Confluence

This section aims to be the interface between bisimulatimhcan-
fluence. As correctness is often studied in terms of detexcyiand
confluence, we seek here to prove something akin to confluzfnce
stores to show the adequacy of our operational semantiasli-Tr
tionally, confluence theorems are proven from the bottomsiipgu
a diamond lemma, iterating that diamond lemma to build 3 stri
lemma, and finally using the strip lemma to construct confieen
[16]. Bisimilarity, however, allows us to skip the iteratiof the
single-step diamond lemma. Indeed, there is no analog ttean i
able diamond lemma here. We instead use bisimilarity toctire
obtain a strip lemma. Nevertheless, the techniques andafiegin
this section are strongly influenced by the clear and readajpi
proach of Pfenning [16].

First we prove the assumption needed for all cases of the dia-
mond lemma, that nondeterministic branching always brasc¢h
configurations with the same store.

Lemma3.7.1f (o, m) ~%s7 (o', m’) and(o, m) 1 (0", m"),
theno’ = ¢” anda = /.

Proof. Straightforward case analysis. |

Lemma 3.8 (Strip Lemma) If R : (o,m) —r {(o’,m’)
and R* : (o,m) — (o’ ,m"), then for somep,n’,n",
(o',m'y —5 (p,n') and (¢”,m") —7F (p,n”’) such that
n' p~7 n’ for p.

(0,m)

R Y*l
(a’,m’) <O'N,m//>
| |
| |
g* : :S*/
! I
<p7 ’I’L/> — R <p7 nH>

Proof. By case analysis on the structureRf and the definition of
|

=T .

Now we can prove the diamond property for stores on the
multistep reduction, which we cadtore confluence

Theorem 3.9(Store Confluence)lf R* : (o,m) —7 (o’,m’)
and R*' : (o,m) — (o”,m"), then for somep,n’',n",
(o',m'y —5 (p,n') and (¢”,m") —7F (p,n") such that
n' 7 n' for p.

(o, m) Subcase: The left side and right side are the same.

R* R By lemma 4.1B is deterministic, both sides step using the same
\ rule, producing the same descendants. But then they aRe by
construction.
<0_/7 m/> <O_//7 m//>
| |
| | (pym) —R——(p,m)
S* 1 S*! I
| | |
! ! « o :
{pin') —wr— (p,n") |
¥
Proof. By induction on the structure at*. O (p',m') R (' m')
Finally, theorem 3.9 implies the familiar notion of storetate
minacy for terminating programs. Subcase: The left side is(while b do s;) k and the right side is
Corollary 3.10. If (o, m) —% (', €) and(o, m) —% (c”, €), (while b do s1) k. Both sides reduce by way While.
theno’ = o¢”. Their descendants are B by construction.

4. Sound and Unsound Optimizations (o, (while b do s}) k) —R— (o, (while b do 1) k)

We have achieved our project of proving the essence of traice ¢ |

pilation correct, yet at the same time that result is largglresting |

due to its modularity with respect to tidfunction. In this section While | 7 7 | While

we show the exampl® from section 2.4 to be sound and explore !

which kinds ofO functions are sound and which are not sound. (0" (if bthen (s} - --) k) (o' (if b the*n ()k

g 5 81 e + g 5 81 ...

4.1 Soundness of Variable Folding

Let F, FV, andO be the ones prgsented in figure 4. For brevity g pcase: The left side is

we assume thak'V (s) is defined in the usual way and correctly) .)

generates the set of free variables foiThat is, for some store, (o, (if bthen (s; while bdo s7)) k)

r{;gégzigﬂe set of variables which never writes to inc during and the right side is
(o, (if bthen (s1 while b do s1)) k)

Suppose the left side reduce b¥alse, then both sides step tg
which is already iR by way of the first subrelation.

Lemma 4.1. — 7 is deterministic.
Proof. — 5 has no points of nondeterminism. a
Lemma 4.2. O is sound.

Proof. Assuming we have for some, w’, k such thatv’ k s~p w k (o, (if bthen (s} ---) k) —R— (o, (if bthen(s1---) k)
for all stores, we want to show thét(w’, o) k p~p w k for o. }

Our technique will be showing th&(w’, o) k p~p v’ k, and

|
then obtaining the desired result via transitivity pfe s . IfFalse | 7 7 | IfFalse
We proceed by case analysis on thdunction. *‘
Case: s = while bdo s;. (o, k) R (o, k)
We want to show that
(while bdo F(s1,0, F'V(s1))) k s~p (while bdosi) k Subcase: The left side is
It suffices to exhibit a bisimulation relatioR such that (o, (if b then (s, while b do s)) k)

R(o, (while bdo F(s1,0, FV (s1))) k, (while b do s1) k)

and the right side is
Letsy = F(s1,0, FV(s1)). We claim the following relation is a . .
bisimulation relation for anyr, p, . Note thatr and the loops are (o, (if b then (s1 while b do s1)) k)

fixed from the assumption. Suppose the left side reduce Hyrue, we can then fill out the
R = {(p,m,m)} diagram as follows. The descendants ar®iby way of the fourth

U {(o, (while bdo 5}) , subrelation, as
(whilebdosi) k)}

U {(ao, (if bthen (s} while b do s1)) ,
(if bthen (s1 while b dos1)) k)}

U {(o',(F(n,o, FV(s1)) while b do s}) k,
(nwhilebdo s1) k)

| o’(z) = o(x) for all free variables irs; } +‘
(0,(s1++) k) ——R——(0,(s51--) k)

sy = F(s1,0,FV(s1))

(o, (if bthen (s -+) k) —R— (o, (if bthen (s1---) k)

|
IfTrue | T 7 1 IfTrue

We proceed by case analysis on the left-side reduction step.

Subcase: The left side is
(F(n,0, FV(s1)) while b do s}) k
and the right side is
(nwhilebdosi) k
The left side steps by way @ssign. By inversion,n = ¢ n’ and
F(n,0,FV(s1)) = F(c,0,FV(s1)) F(n',0, FV(s1))

Further,c = z := e. For brevity letn” = F(n’, 0, FV (s1)).

By case analysis oawe have two subcases. In the case where
e = n, we have an identity. In the case where- 2’ + 1Az’ € v,
e = o(z') @ 1. We know thato(z') is defined from assumption
that the left side steps at all. This means the left side sieksllike
the following. The call toF is abbreviated due to space.

k) 25 (o' [z/o(z) @ 1], (") k)
wheres = z/o(z') © 1

<0_/7 (c/ n// .

By inversion then we see that the right side, starting with
also steps byAssign. By the definition ofo’ we have the following
reduction for the right side

) k) o (o' fe/o’ (@) @1, (n'-+) k)

whered’ = z/d'(z') @ 1
For these two descendants to beRn we needo’ (z') = o(z’).
We know this to hold for all free variables 1, as their freeness
guarantees them to be never written to duria® reduction. We
assumed that'V correctly generates the set of free variables for
a statement. It is easy to see thats a descendant of;, thus
x € FV(s1) ando’(z") = o(z') holds.

SinceF'V is correct,z is not free insy. Therefore,

o'le/o’ (') ®1](y) = o (y)

for all y free insy. This finally gives us
R(o'[z/0’(z") @ 1],n",n)

which holds by way of the fourth subrelation.
For the diagram below, let= o(z’) © 1.

(o', (cn -

(o' (F(n,o,FV(s1))--+) k) —R— (0, (n---) k)

Assign | § & ' Assign

i
(o'[z/v], (F(n,0, FV (s1)) -+) k) R (o”[x/v], (n'--) k)

All other cases (where is something other thanwhile loop)
are identities. The proofs for the converses are symmetric.

We have showrO(w’, o) k p~p w' k for o. By transitivity,
we have the desired result 6w, o) k p~p w k.

The most interesting part of the proof is that in every subcas
we relied on the right side to be able to mirror the left sidatve
exactly in a single step. This is a stronger property thanired by
the bisimulation definition, which says onlysible moves need to
be mirrored.

4.2 Soundness of Dead Branch Elimination

What kinds of optimizations only mirror visible moves? Oranc
imagine that during tracing we may generate many spuridles si
exits. Suppose we extend our variable folding example to als
eliminate “dead”, or alway$alsebails. The modifications needed
for F' are shown in figure 5.

For example, considered the following example trace with a
dead side-exit. Clearly is free in the body of the traced loop, and
the boolean expressian# 0 is always going to béalse

Example Trace with Dead Bail
1 while z =0do
2 bail = # 0to k;
3 z:=1;

Plugging the above example into the extendegdunction will
output the following.

Example Trace with Dead Bail Optimized Away
1 while z =0do
2 z:=1;

Such an optimization does not generate code that exactly mir
rors the original. This fails to hold if we wholly excise desghdi-
tionals, as the original code would still need to take a sbegval-
uate the conditional to false before skipping it. To showt this
new optimization is still bisimilar, let us extend lemma #i¢h the
proof sketch of a new subcase and its converse.

New subcase and its converse for lemma 4.2.
Subcase: The left side is
(F(n,o, FV(s1)) while bdo sy) k
and the right side is
(nwhilebdosi) k
The left side takes some step. ket= ¢ n’ and
F(n,0,FV(s1)) = F(n',0, FV(s1))

We are concerned with the case when= bail ' to k' A
F(t',0,FV(s1)) = false all other cases for are identities. For
brevity letn” = F(n', 0, FV (s1)).

The left side step looks like the following for somé&’. The call
to F' is abbreviated due to space.

/ 1" 1" "

(o) k) =5 (o

s (n (R) k)

By inversion we know that (b') = false Since we assumed
that "V correctly generates the set of free variablessfoandc is
asi-descendant, so’(b') = false By inversion then we see that
the right side, starting with, steps byBailFalse.

) k) == (o', (-) k)

It remains to show that’ can take a step to match the left
side step thatF'(n', o, FV (s1)) took. We again decompose’
into its first command and continuation. We iteratively gpitle
same reasoning we just underwent until the first commandtis no
bail b’ to k" AF (b, 0, FV (s1)) = false For these other casés
acts as an identity for the first command and as congruendador
continuation, so clearly it will take the samestep.

In the diagram below, let mean “1 or more times”.

) k)

(o (cn' -

(o', (F(n',0,FV(s1))---) k) —=R— (o', (n -~

|
|
7 | BailFalset
/

a (@ ())

true
false
true
false
undef

F(byo,v) =

F(c,ov) =4(€

fo=z=0Az€vA(
fb=z=0AzcvAo(z
fo=xz£0Az€vAT(
fb=xz#0Az€vAo(
otherwise

if ¢ = bail bto s1 A F(b,0,v) = false

Figure 5. Variable Folding extended with Dead Branch Elimination

F(e,ov) =4 €

if c =z := e A x has no use sites in the trace

Figure 6. Variable Folding extended with Dead Branch and Dead Stdmaition

The converse is considerably simpler. We have the case wheremove, but(c, ¢) A g (o]z/1], s) for any s. In fact, it does not

the right side steps bfailFalse. By the same reasoning above
concerning free variables, we see that the left side woukd had
its bail optimized away inta, thus we can complete the diagram
by usingld.

All other cases are still identities. O

4.3 Unsoundness of Dead Store Elimination

Finally, we want to explore what kinds of optimizations aira@y
unsafe in the tracing framework. Put formally, we want to ablat
kind of optimizations do not produce bisimilar code. Coniiy
with our existingO function, suppose we were to extend it with
dead store elimination. That is, suppose variables thatssigiato
but have no use sites inside the trace body are simply excisesi
is shown informally in figure 6.

For example, consider the following example trace with addea
assignment. The variableis assigned but never used.

Example Trace with Dead Assignment
1 while z =0do
2 z:=1;

Plugging the above example into the extendgdunction will
output the following.

Example Trace with Dead Assignment Optimized Away
1 while z =0do
2 €

Intuitively this is unsafe because even thougts dead inside
the trace, there very well may be use siteszcédifter the trace!
This intuition is reflected formally. Taking our example abpwe
need to show that := 1; takes a step that can be mirrored by
e. For someg, by inversionz := 1 can step only byAssign:
(0,2 := 1) —5 (o[z/1],€). € needs to be able to match this

step at all.
In this fashion this optimization does not output bisimitade,
and is not safe for use inside the tracing framework.

4.4 Soundness of Composition

One property that correct optimizations enjoy in our frarogwis
that the composition of two correct optimizations also ¢ialcor-
rect optimization. We give the following two lemmas to demon
strate this property.

Lemma 4.3. Let I : (Statement< Store — Statemenbe the
identity function on its first argument.is sound.

Proof. Trivial by the definition ofO-soundness. a

Lemma 4.4. Let F, G : (Statemenk Store — Statemenbe two
sound optimizations. Let their composition be defined as

FoG=\(s,0).F(G(s,0),0)
F o Gissound.

Proof. We want to show that for any, w’, k such that’ k p~p wk
for all stores(F o G)(w',0) k p~p w k for o.
By soundness off onw, w’, k we know that

G(w'7a) kp~pwk
By soundness of’ onw, G(w’, o), k we then know that
F(GW',0),0) k p~pwk
But F(G(w',0),0) k= (FoG)(w' o), sowe aredone. 0O

5. Related Work

The work carried out in this paper depends on both compiler-
correctness and concurrency techniques. Though the eoigfor
both communities are large, there is a dearth of truly releva
papers that explore purely operational compiler corresstrod JIT
compilers from as a high-level as ours. Nevertheless, we teken
inspiration as well as fruitful comparisons with severark®
Relevant is Wand'’s work on parallel compiler correctne$q.[2
We believe Wand’s enterprise to be, though also employisigrini-
lations to prove compiler-correctness, of a different ftathan our
own. His approach is the combination of (syntax-directest)ada-
tional semantics and essentiallyconvertibility. His picture is also

closer to the traditional picture of compiler correctnégjs{that is,
the compilation process preserves denotation up to bisition—
than ours, as his compiler is an ahead-of-time compiler. lae
gance of Wand’s work is that he recognized tRatonvertibility
inducesbisimilarity; in the conclusion he admits that almost a# th
required reasoning is done in thecaculus and as such, he can
re-use work already done in sequential compiler correstnes

Unlike Wand's work, our vision of correctness is purely syt
directed: the translation itself (if the JIT tracing can bersas such)
becomes a non-instantaneous process since we have tot spell i
in the operational semantics. This is what makes the enserpon-
trivial. Our notion of convertibility informally become®mething
akin to “store-convertiblity”, but this is much less powdrthan -
convertibility as it does not directly imply bisimilaritye also do
not have the luxury of bringing to bear the entirety of thealculus
machinery, so our technique here, while still using bisetiohs, is
at once more basic and less elegant.

There is also a breadth of literature exploring using bisétion
to show program equivalence by way of contextual equivaenc
Pierce et al., Lassen et al., and Wand et al. [10, 17-19]. Jthou
the topics of their specific investigations differ, they atincern
themselves with using bisimulation as a more tractablefyismh-
nigue to prove contextual equivalence without having teersally
quantify over all contexts. Their setting is higher-ordenmodeled
within the A-calculus. Pierce et al. [19], for instance, aims to prove
bisimiliarity sound and complete with respect to contekaguiv-
alence for a modified\-calculus with recursive types. Wand [10]
aims to improve the proof technique and reasons abawtaculus
extended with explicit stores. These works are basic irgasdns
into the nature of the proof technique. Ours is an applicatd
the technique to prove equivalence of a dynamically transéol
program. We also arrived at bisimiliarity by an entirelyfedient
motivation, that of proving determinism of a JIT compileatiper-
forms the dynamic transform. We are not met with the difficoit
universally quantifying contexts; in fact, we fix our coreess to
hold for one context only.

Myreen’s method of creating formally correct JIT compilers
for x86 [15] is at the much lower level of abstraction: maehin
language. They use Hoare logic, and so still retain a flavahef
denotational. We are much farther from the “bare metal” ey
are.

6. Conclusions and Future Work

We have demonstrated a paradigm for high-level, purely aper
tional correctness of the tracing JIT compilation techeiquia
bisimulation and confluence. Unlike traditional aheadhafe com-
piler correctness where the translation process from thecsdan-
guage to the target language is an opaque function, tracpilesm
correctness requires the translation—the tracing—to ledlexh
out explicitly. We overcome this difficulty by using bisinations,
though we strive to maintain continuity with existing pyrepera-
tional correctness approaches by returning to confluence.

We hope that the theoretical framework we have provided will
prove useful in reasoning about trace compilers at a highl.lgVe
hope that we have opened up a wealth of possible future @sear
in the foundational differences betweens traditional aade opti-
mizations. Though a different problem, we also feel appjytine
trace compilation technique to an applicative setting, elginthe
A-calculus, will be a worthy venture. It is also interestingurther
exploreO and the question of just what exactly is observable in
computation. We also hope to look at deriving tools from #eht
nigues described here in the future.

AcknowledgementsWe thank Michael Bebenita and the Mozilla
JavaScript team for enlightening discussions about théeimgnta-

tion of trace compilers. We also thank Jonathan Lee, Oreibé&ngg
Kannan Goudan, Dave Herman, Dimitris Vardoulakis, and the
anonymous reviewers for draft reading and helpful disaunssi

References

[1] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banddjjmamo: A
transparent dynamic optimization system.HhDI '00, pages 1-12.
ACM, 2000.

[2] Michael Bebenita, Florian Brandner, Manuel Fahndri€inancesco
Logozzo, Wolfram Schulte, Nikolai Tillmann, and Herman Y&m
SPUR: A trace-based JIT compiler for CIL. ®OPSLA '102010.

[3] Michael Bebenita, Mason Chang, Gregor Wagner, Chnsfiammer,
Andreas Gal, and Michael Franz. Trace-based compilatiexétu-
tion environments without interpreters. RiPPJ '1Q 2010.

[4] Mason Chang, Edwin W. Smith, Rick Reitmaier, Michael Bplta,
Andreas Gal, Christian Wimmer, Brendan Eich, and Michaengr
Tracing for web 3.0: trace compilation for the next generativeb
applications. INVEE, pages 71-80, 2009.

[5] Joélle Despeyroux. Proof of translation in natural aetcs. InLICS,
pages 193-205, 1986.

[6] Cormac Flanagan and Matthias Felleisen. The semariticsure and
its use in program optimization. IROPL '95 pages 209-220. ACM,
1995.

[7] Andreas Gal. Efficient bytecode verification and compilation in a
virtual machine PhD thesis, 2006. Adviser: Michael Franz.

[8] Andreas Gal, Brendan Eich, Mike Shaver, David Andersbayid
Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydonreloa
Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin VithSm
Rick Reitmaier, Michael Bebenita, Mason Chang, and Miclkaahz.
Trace-based just-in-time type specialization for dynalamguages. In
PLDI '09, pages 465-478. ACM, 2009.

[9] A. J. Kfoury, Michael A. Arbib, and Robert N. MollA Programming
Approach to ComputabilitySpringer-Verlag, 1982.
[10] Vasileios Koutavas and Mitchell Wand. Small bisimidas for rea-

soning about higher-order imperative programsP@PL '06 pages
141-152. ACM, 2006.

[11] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl ChastFred-
eriksen. Proving correctness of compiler optimizationstéayporal
logic. InPOPL '02 pages 283—-294. ACM, 2002.

[12] Sorin Lerner, Todd Millstein, and Craig Chambers. Auttically
proving the correctness of compiler optimizationsPIlrDI '03, pages
220-231. ACM, 2003.

[13] Mozilla Metrics. Firefox usage: https://metrics.nil@com/.

[14] Robin Milner. Communication and Concurrencirentice Hall, 1995.

[15] Magnus O. Myreen. Verified just-in-time compiler on x86& POPL
'10, pages 107-118. ACM, 2010.

[16] Frank Pfenning. A proof of the Church-Rosser theorem s rep-
resentation in a logical frameworkiournal of Automated Reasoning
1993.

[17] Kristian Stgvring and Soren B. Lassen. A complete, rauctive
syntactic theory of sequential control and state.PDPL '07, pages
161-172. ACM, 2007.

[18] Eijiro Sumii and Benjamin C. Pierce. A bisimulation fdynamic
sealing. INPOPL '04, pages 161-172. ACM, 2004.

[19] Eijiro Sumii and Benjamin C. Pierce. A bisimulation fiype abstrac-
tion and recursion. II?OPL '05 pages 63-74. ACM, 2005.

[20] Mitchell Wand. Compiler correctness for parallel laiages. IFFPCA,
pages 120-134, 1995.

[21] Mitchell Wand and William D. Clinger. Set constraintsr fdestruc-
tive array update optimizationJournal of Functional Programmng
11(3):319-346, 2001.

[22] Mitchell Wand and Igor Siveroni. Constraint systems tseless
variable elimination. IiPOPL '99 pages 291-302. ACM, 1999.

