
The Essence of Compiling with Traces

Shu-yu Guo Jens Palsberg
UCLA Computer Science Department

University of California, Los Angeles, USA
{shu,palsberg}@cs.ucla.edu

Abstract
The technique of trace-based just-in-time compilation wasintro-
duced by Bala et al. and was further developed by Gal et al. It
currently enjoys success in Mozilla Firefox’s JavaScript engine. A
trace-based JIT compiler leverages run-time profiling to optimize
frequently-executed paths while enabling the optimized code to
“bail out” to the original code when the path has been invalidated.
This optimization strategy differs from those of other JIT compilers
and opens the question ofwhich trace optimizations are sound. In
this paper we present a framework for reasoning about the sound-
ness of trace optimizations, and we show that some traditional opti-
mization techniques are sound when used in a trace compiler while
others are unsound. The converse is also true: some trace optimiza-
tions are sound when used in a traditional compiler while others
are unsound. So, traditional and trace optimizations form incompa-
rable sets. Our setting is an imperative calculus for which tracing
is explicitly spelled out in the semantics. We define optimization
soundness via a notion of bisimulation, and we show that sound
optimizations lead to confluence and determinacy of stores.

Categories and Subject Descriptors D.2.4 [Program Verifica-
tion]: Correctness proofs, formal methods; D.3.4 [Processors]:
Compilers; F.3.2 [Semantics of Programming Languages]: Oper-
ational semantics

General Terms Languages, Theory

Keywords just-in-time compilation, compiler correctness, bisim-
ulation

1. Introduction
With the advent of “Web 2.0”, the web browser has become a plat-
form that delivers rich interactive applications. The technology cen-
tral to this transformation of the web browser is JavaScript. Java-
Scipt’s dynamic nature has since then become a performance bot-
tleneck. The performance of dynamic languages is much worse
than statically typed languages, and JavaScript is no exception.
Moreover, traditional just-in-time (JIT) compilation techniques de-
signed for static, typed languages are ill-fitted for JavaScript.

The work of Bala et al. [1] was adapted as a novel JIT compi-
lation technique called trace compilation [2–4, 7, 8]. A trace-based
JIT compiler uses run-time profiling to approximate the “hot” exe-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

cution paths (loops) in the program and compiles only those paths
[4, 7, 8]. The rarely executed bits of code are interpreted. The idea
is quite intuitive: if there is a repeatedly executed section of the
code, that section should be top priority for compiling to native
code. For example, a micro-blogging web application might take
many rows of data and transform them into a news feed format.
This loop would be where the program spends the majority of its
time; a trace-enabled JIT detects that this loop is a hot execution
path and compiles it to native code.

Tracing JIT compilers are amenable to JavaScript and enjoy
their greatest success in Mozilla Firefox’s JavaScript engine (Trace-
Monkey). It is available in versions 3.5 and greater, and Mozilla
metrics report that approximately 94 million people in the world
are using the tracing JIT [13].1

Tracing JIT compilers differ greatly in technique from many
other JIT techniques. It opens the following question:

Which trace optimizations are sound?

We distill the essence of trace compilation to a simple impera-
tive calculus with an operational semantics. This allows usto for-
mally investigate notions of correctness of trace-based JIT com-
pilers and the properties that trace optimizations must satisfy to
be sound. We present a bisimulation-based soundness criterion for
trace optimizations, and we prove a determinism theorem: whether
one traces or not, the final store will be the same.

Our framework is modular in two ways. First, an optimization
designer needs only prove that a given optimization satisfies our
correctness criterion; the determinism theorem then follows. Sec-
ond, the composition of two sound optimizations is itself sound.
We leverage the first kind of modularity to easily prove soundness
of the folding of free loop variables and dead branch elimination.
Proving optimizations unsound is equally simple. We show that
dead store elimination is unsound with an easy-to-check counterex-
ample. Readers can easily proceed like we did to prove additional
trace optimizations sound.

Our proof of the determinism theorem has the following coarse
steps. First we prove that an unoptimized, recorded trace ofthe
loop is “behaviorally correct”, or bisimilar, to the original loop. We
then prove that the original program with the new trace stitched
in place of the old loop is bisimilar to the original program.This
then sets the stage for sound optimizations: sound optimizations are
those that do not invalidate this behavioral correctness guarantee
had from bisimilarity. Finally, we put the pieces together and prove
confluence and determinacy of stores via a diamond lemma and a
strip lemma.

Our framework shows, surprisingly, that “traditional” whole-
function optimizations and tracing JIT optimizationsdo not stand
in a subset relation in either direction. In one direction, it is clear

1 The exact average of daily usage from January 1, 2010 until July 12, 2010
of versions 3.5, 3.6, 3.7, and 4.0 is 93,977,941.

that traditional optimizations are not subsumed by trace optimiza-
tions. Informally, trace optimizations are not obliged to be correct
for all possible executions and contexts. They are obliged to be
correct only for aparticular execution and aparticular context.
For instance, in the paper we prove folding of variables thatare not
assigned to be sound for tracing but unsound in general in a tra-
ditional setting. In the other direction, trace optimizations are also
not subsumed by traditional optimizations. The reason for this is
more subtle: the domain of trace optimizations is restricted to only
the trace. The code surrounding the trace is unavailable to the op-
timizer. Traditional optimizations, on the other hand, areprivy to
both the prefix and the suffix of the trace in that their domainis
the entire procedure. In other words, those optimizations can prove
properties on entire procedures while trace optimizationscannot.
For one, whole-function optimizations know that their local vari-
ables are dead after the function exits. Trace optimizations cannot
make the same assumption about their local variables after the trace
exits. In the paper we show dead store elimination to be unsound as
a trace optimization.

To expand upon the incomparability of the two sets of opti-
mizations, it is illuminating to spell out the differences between our
work and recent prominent works in compiler correctness [11, 12].
The program equivalence condition (Lemma 1) found in Lacey et
al. [11] basically states classical bisimilarity as the condition un-
der which to judge the correctness of optimizations. An optimized
program must be bisimilar to the original and their respective final
stores must contain the same values for all variables. In their frame-
work, optimizations are formulated as rewrite rules with side con-
ditions expressed in temporal logic. Despite this difference, we can
make the following fruitful comparisons. We writem ≈ n for σ
to mean that the programm is bisimilar ton when their initial
stores areσ. Suppose there is an optimization functionO. Their
correctness criterion describes traditional optimizations and is ex-
tensional: for allp, p ≈ O(p) for all stores. Our correctness crite-
rion describes tracing optimizations and is intensional. Suppose the
programp decomposes into two components,w (the traced loop)
andk (the rest of the program). The criterion is then: for allw, k, σ,
w k ≈ O(w, σ) k for σ. Note how our optimization function takes
a stateσ in addition to a program to produce an optimized program
guaranteed to be correct when the initial store is fixed to be that
store and the rest of the program is fixed to bek. This succinctly
captures that trace optimizations may not be straightforwardly used
in a classical setting.

The correctness criterion in Chambers et al. [12] raises yetmore
differences between classical optimization soundness andtrace op-
timization soundness. At the heart of their formulation of sound-
ness is contextual equivalence. However, note that we have said
that trace optimization correctness is intensionalized toa particular
computation suffix. This necessarily precludes trace optimization
correctness from being contextual equivalence. Classicaloptimiza-
tions speculate about the behavior of a program to substitute op-
timized portions for the original portionsbeforeexecution. Trace
optimizations, on the other hand, know exactly the behaviorfor
which they need to optimize and substitute optimized portionsdur-
ing execution. This departure also highlights that the input totrace
optimizations is mercurial: we do not knowa priori what loops are
hot. The input to classical optimization on the other hand isfixed.
In Chambers et al. and Lacey et al. [11, 12], this input is the en-
tire program. As mentioned before, the domains of the two kinds
of optimizations are simply different.

The remainder of this paper is organized as follows. In section
2 we introduce our language, its operational semantics, anddiscuss
certain properties of compiling with traces. In section 3 weshow
that the operational semantics of our language is correct upto weak
bisimulation and relate the results to confluence. In section 4 we

explore various optimizations, both provably correct and provably
incorrect, pluggable into the framework. In section 5 we discuss
related work. Section 6 concludes.

2. Compiling with Traces
What is essential to the trace compilation technique? What features
must our calculus contain? At its core, it is a method of compiling
often-executed loops. We must therefore have loops. More specif-
ically, it is a technique of recording loop bodies at run-time and
optimizing them. The second essential part must thus be the ability
to record execution. What is optimized, then, is not the textof the
loop but a run-time execution paththroughthe loop. In other words,
we are optimizing some fixed execution. So, when the execution
diverges from the recorded path, there must exist a mechanism to
return us to the original program. The third and final component
is this bail-out mechanism. In the literature of trace compilation,
these are called side-exits [8].

We forego modeling the many other features of the technique
that exist in implementations. For instance, we shall not model the
heuristics in how one actually detects a hot path of execution, we
will simply build in the ability to record a path of executionnonde-
terministically. This nondeterminism will be realized viaoverlap-
ping reduction rules. Nor shall we model implementation details,
such as trace trees and their interactions [7]. We aim to keepthe
calculus minimal yet high-level, safe—and even desirable—for hu-
man consumption.

2.1 The Language and Its Baseline Execution

We first present the syntax and small-step operational semantics for
a simple imperative language with two of the three essentialingre-
dients: loops and the ability to “bail out” modeled by continuations.

The syntax of our language, inspired by the calculus presented
in Moll [9], is shown in figure 1. Concretely, traces are a subset
of normal statements. They are meant to be straightline sections
of code with side-exits, so there are only no-ops, assignments, and
side-exits.

We usex to range over variables,i to range over non-negative
integers,σ, ρ to range over stores, andl, m,n, k, s, p to range over
statements throughout the rest of the paper.

The baseline transition rules are shown in figure 2. Assume
⊕ is the “real” addition operator on integers. We use a labeled
transition system where labels correspond to store updates. We
assume the reader is familiar with such systems as they are used in
the literature of concurrency [14]. The only observable transitions
are store updates, which are labeled by the “store delta”. All other
transitions are silent, labeledτ , and are unobservable. The subscript
B denotes baseline transition rules. The subscriptA denotes a
strict subset of the baseline transition rules that will be used in the
upcoming proofs. The subscriptT denotes tracing transition rules.
The baseline rules in figure 2 are common to both.

The baseline rules do the usual things.BailTrue is the rule that
applies continuations in thebails. It says to clobber the current
reduct with the packaged continuations.

2.2 Recording Traces

We extend the baseline execution with the ability to record traces.
The set of baseline rules is a proper subset of the tracing rules,
i.e.−→B⊂−→T . The abstract syntax is the same between the two
languages. The additional transition rules are shown in figure 3.

Starting Traces We start a trace at the beginning of awhile loop.
For technical reasons for the proof of correctness, we record when
we have already unfolded at least one iteration of the loop.

Also note thatTrace puts the reduction rules inrecording mode,
which is represented syntactically as 4-tuples. The components are,

e ::= n | x+ 1 expressions

b ::= x = 0 | x 6= 0 boolean expressions

w ::= while b do s loops

s ::= ǫ | c s statements

c ::= skip; | x := e; | w | if b then s | bail b to s commands

t ::= ǫ | ct t traces

ct ::= skip; | x := e; | bail b to s recorded commands

Figure 1. Syntax of the Simple Imperative Language and Traces

σ̂(e) =

{

n if e = n
σ(x)⊕ 1 if e = x+ 1

σ̂(b) =











true if b is x = 0 ∧ σ(x) = 0
false if b is x = 0 ∧ σ(x) 6= 0
true if b is x 6= 0 ∧ σ(x) 6= 0
false if b is x 6= 0 ∧ σ(x) = 0

δ ::= x/i | x/true | x/false store updates

α ::= τ | δ actions

〈σ, x := e; k〉
δ

−→T,B,A 〈σ[x/σ̂(e)], k〉 whereδ = x/σ̂(e) (Assign)

〈σ, skip; k〉 τ
−→T,B,A 〈σ, k〉 (Seq)

〈σ, (if b then s) k〉
τ

−→T,B,A 〈σ, k〉 if σ̂(b) = false (IfFalse)

〈σ, (if b then s) k〉
τ

−→T,B,A 〈σ, s k〉 if σ̂(b) = true (IfTrue)

〈σ, (while b do s) k〉
τ

−→T,B,A 〈σ, (if b then (s while b do s)) k〉 (While)

〈σ, (bail b to s) k〉
τ

−→T,B,A 〈σ, k〉 if σ̂(b) = false (BailFalse)

〈σ, (bail b to s) k〉
τ

−→T,B 〈σ, s〉 if σ̂(b) = true (BailTrue)

Figure 2. Shared Transition Rules

¬b =

{

x = 0 if b is x 6= 0
x 6= 0 if b is x = 0

〈σ, (if b then (s (while b do s))) k〉
τ

−→T 〈σ, (while b do s) k, ǫ, s (while b do s) k〉 if σ̂(b) = true (Trace)

〈σ, kw, t, x := e; k〉
δ

−→T 〈σ[x/σ̂(e)], kw, t (x := e;), k〉 whereδ = x/σ̂(e) (RecordAssign)

〈σ, kw, t, skip; k〉 τ
−→T 〈σ, kw, t (skip;), k〉 (RecordSeq)

〈σ, kw, t, (if b then s) k〉
τ

−→T 〈σ, kw, t (bail b to (s k)), k〉 if σ̂(b) = false (RecordIfFalse)

〈σ, kw, t, (if b then s) k〉
τ

−→T 〈σ, kw, t (bail ¬b to k), s k〉 if σ̂(b) = true (RecordIfTrue)

〈σ, kw, t, (while b do s) k〉
τ

−→T 〈σ, kw, t (skip;), (if b then (s while b do s)) k〉 if kw 6= (while b do s) k (RecordWhile)

〈σ, kw, t, (while b do s) k〉
τ

−→T 〈σ,O(while b do t, σ) k〉 if kw = (while b do s) k (Stitch)

〈σ, kw, t, k〉
α

−→T 〈σ′, k′〉 if 〈σ, k〉
α

−→T 〈σ′, k′〉 ∧ kw 6= k (Abort)

Figure 3. Tracing Transition Rules

in order, the store, the stopping point of the trace, the trace thus far,
and the current program being reduced.

Recording Traces The recording rules record one command at
a time and concatenate it to the end of the trace. Concatenation
is simple juxtaposition. The trace itself is a straightlinesection of
code, so we install side-exits (pieces of code that jump backto
untraced code when the condition we traced no longer holds) when
we record conditionals.

To ease the task of proving correctness,RecordWhile appends
a skip to the trace while unrolling the loop. Its side condition is to
ensure that we are recording aninner loop inside the current loop
we are tracing, and that we have not come full circle and finished
tracing. The work for finishing up a trace is done inStitch, whose
side condition is mutually exclusive with that ofRecordWhile.

Ending Well-Behaved Traces We end the trace and stitch it back
into the program usingStitch when we finish tracing the body
of the loop. We know we have finished when we come back to
reducing the same loop that started the trace.

We “compile” the loop that was traced into the same language.2

The actual optimization is immaterial to the semantics; we assume
that there is a sound optimization functionO : (Statement×
Store) → Statement. What soundness entails here will be made
precise when we investigate correctness. Informally, soundness
means that the output of theO function “does the same thing” as the
original code, as far as observable behavior (store updates) goes.

Ending Badly-Behaved Traces We are not guaranteed to finish
tracing the body of the loop. That loop body might never terminate!
Consider the following example; assumes2 never changesb to 0.

1 a := 1;
2 b := 1;
3 while a 6= 0 do
4 s1
5 while b 6= 0 do
6 s2

If we start tracing theouter loop, once we start executing the
inner loop we will never finish the outer loop body, and thus never
finish tracing. Implementations of trace compilation, then, must use
heuristics to end the trace if it is continuing on for too long.

In our semantics, we model this by introducing another nonde-
terministic rule that prematurely stops the trace,Abort. This rule
shares the same premises withall Record rules, where “ ” is a
wildcard. Note that there are no axioms for recordingbails—what
this means is that instead of the semantics getting stuck when trying
to trace a trace, we abort the trace (that is, we do not model higher-
order tracing). Also note thatAbort’s3 side condition is mutually
exclusive withStitch, which is intuitively the “good” situation of a
successful trace. In this way the rule models the semantics of bail-
ing out of tracing mode for all “bad” situations.

2.3 Example Trace Recording

To help illustrate the tracing rules and to build some concrete
intuition, consider the following contrived example.

Example Input
1 x := 0;
2 while x = 0 do
3 y := 0;

2 Note that this is a simplification in our model. In actual tracing JITs, the
compiled code is in machine language.
3 The rule is modeled as presented instead of the viable alternative of
〈σ, kw, t, k〉

τ
−→T 〈σ, k〉 if kw 6= k for a cleaner proof of correctness.

4 while y = 0 do
5 y := 1;
6 z := 1;
7 b := a+ 1;

There are two loops; the inner loop only iterates once. The variable
a is computed at some earlier point in the program. We give a rule-
by-rule walkthrough of tracing the outer loop. We build up the trace
in tandem with our walking through of the reduction rules; each
snippet that theRecord rules append to the trace is displayed one
by one.

To start, line 1 of the input is matched byAssign, so we reduce
byAssign. Line 2 is awhile loop, which we reduce byWhile.While
converts the loop into anif statement testing the conditionx = 0.
This is indeed true by how we mutated the store in line 1, so we can
reduce byIfTrue orTrace. In the interest of demonstrating tracing,
we reduce byTrace. The trace built thus far is empty, orǫ. We’ve
only entered recording mode, but we haven’t actually recorded any
commands yet.

Line 3 in the input is an assignment, which is matched by
RecordAssign. RecordAssign appends the assignment itself onto
the trace:

Example Trace
1 y := 0;

Line 4 in the input is the inner loop, and we will now see how the
tracing rules deal with recording loops. The loop itself will first
reduce to anif via RecordWhile, which appends a no-opskip; to
the trace. In reducing the resultingif , we are testing the condition
y = 0. It is true, so we reduce usingRecordIfTrue. The result is
that we append a side-exit as abail to the trace. The computation
that would have been executedhad the condition been falsegets
packaged up as a continuation and gets put into the body of the
bail (shown indented in the listing):

2 skip ;
3 bail y 6= 0 to
4 z := 1;
5 b := a+ 1;
6 while x = 0 do
7 y := 0;
8 while y = 0 do
9 y := 1;

10 z := 1;
11 b := a+ 1;

Now that we have installed the side-exit for entering into the inner
loop, we trace the body of the inner loop as straightline code.
Line 5 in the input is another assignment, which we record using
RecordAssign.

12 y := 1;

After the body of the inner loop we attempt to reduce the
next iteration of that loop. Again, the loop will first reduceto an
if by RecordWhile. This appends askip;. Unlike the last time,
however, the conditiony = 0 is now false, so we instead reduce
usingRecordIfFalse. We append another side-exit as before, but the
packaged continuation is different. Since the condition was false in
the actual execution, we need to include the statement that would
have been executed if the condition were true. After that statement
we package the rest of the iteration of the outer loop and append it:

13 skip ;
14 bail y = 0 to
15 y := 1;
16 while y = 0 do

FV : Statement→ Variables

FV (s) = {x | x is free ins}

F : ((Expression+ Statement+ Command)× Store× V) → Statement

F (e, σ, v) =







n if e = n
σ(x)⊕ 1 if e = x+ 1 ∧ x ∈ v
e if e = x+ 1 ∧ x 6∈ v

F (s, σ, v) =

{

s if s = ǫ
F (c, σ, v) F (s1, σ, v) if s = c s1

F (c, σ, v) =

{

x := F (e, σ, v) if c = x := e
c otherwise

O : (Statement× Store× V) → Statement

O(s, σ) =

{

while b doF (s1, σ,FV (s1)) if s = while b do s1
s otherwise

Figure 4. Variable FoldingO

17 y := 1;
18 z := 1;
19 b := a+ 1;
20 while x = 0 do
21 y := 0;
22 while y = 0 do
23 y := 1;
24 z := 1;
25 b := a+ 1;

Finally, we applyRecordAssign twice to lines 6–7 and append the
assignments to the trace.

26 z := 1;
27 b := a+ 1;

Having successfully traced an iteration of the loop, we now reduce
byStitch to stitch the trace back into the program using the identity
as theO function. Abbreviating the continuations for the side-exits
aski, the final stitched traced loop is as follows.

Abbreviated Stitched and Traced Example Loop
1 while x = 0 do
2 y := 0;
3 skip ;
4 bail y 6= 0 to k1
5 y := 1;
6 skip ;
7 bail y = 0 to k2
8 z := 1;
9 b := a+ 1;

2.4 ExampleO

We have seen the output of tracing, but we obviously want to do
more than that. We want to optimize. Consider optimization shown
in figure 4 that folds away variables that we never assign to inside
a traced loop. First we define a function that calculates the “free”
(in the sense of never-assigned-to) variables of a statement. It is
assumed to be defined in the usual way. Next we define a helper
functionF that does the actual optimization.V is the set of free
variables. Finally theO function is just a wrapper aroundF that
calculates and passes in the free variables.

If we apply it to our running example wherea 7→ 41, we fold
the assignment tob on line 9 of the abbreviated stitch example:

9 b := 42;

The main benefit of run-time optimization is that we can be
more aggressive than with ahead-of-time optimization. Here we
presented a simple conservative folding of free loop variables. The
idea is that free variables in the loop bodycan be treated as constants
and folded until we break out of the loop. We cannot be so bold with
a static version of this kind of folding, as we can only do so ifwe
know that the variables we want to fold are constants for the entirety
of program execution. Here, however, we only need to know that
the variable’s value does not changeuntil the loop is finished.4

3. Correctness
What does it mean for a trace to be correct? First, correctness of the
traced code is behavioral correctness—the trace has to “do the same
thing” as the original code. Attempting to prove confluence of the
program text such as in Pfenning [16] is unfruitful, as thereare no
guarantees in trace compilation of the traced code converging back
to the same text as the original program. In a reactive user-interface,
for instance, we might trace-compile many inner loops, and those
compiled inner loops might execute forever, waiting for user input.
But even in those cases of infinite execution we still want to reason
about correctness. The need for infinite executions suggests the tool
of bisimilarity.

Second, correctness of the traced code is intensional correct-
ness. Unlike ahead-of-time compiler correctness, we cannot say
that an optimized trace is observationally equivalent, or has the
same sequence of observable reductions, to the original loop in
the traditional, extensional sense. Specifically, an optimized trace
neednot be observationally equivalent to the original loop under
all stores. Consider the following version of our little example:

1 x := 0;
2 while x = 0 do
3 b := a+ 1;

A reasonable trace-based optimization ifa 7→ 41, as we have seen,
would be to replace the loop body withb := 42. But this code is

4 In our simple model, the trace is effectively discarded after the loop exits.
There is no way to re-enter a traced loop once it exits. This isnot the case
in practice, where constructs such as methods allow compiled traces to be
called multiple times. In those cases the tracing JIT has to add in more
guards and side-exits to guard the folded values. We omit this complexity.

most definitely not observationally equivalent to the original: the
original has a free variable,a, and the optimized codeb := 42
does not. Side-exits are also problematic. How do we ensure that
we jump back to the right place in the original code?

We retain the familiar notion of observational equivalence, but
parameterize it over stores and computation suffixes. Namely, a
trace is correct if it is observationally equivalent to the original
loop for the store that the original loop is currently reducing under
and for the rest of the program that the original loop would have
reduced under.

To formalize these intuitions, we model correctness using inten-
sionalized bisimulations over stores. Intensionalizing to a particular
suffix will be made formal in the definition ofO soundness in sec-
tion 3.3. Bisimulation techniques see popular use in process calculi
[14]. There is also existing work in the analysis and correctness
proofs of program transformation [6, 21, 22].

The definitions here are built upon, but slightly different from,
the standard notions found in the concurrency literature [14], as
they are defined over a store. Observational equivalence also be-
comes formally defined as the notion of bisimilarity. Let theset of
labels be defined as follows.

Act= {δ | δ is a store update} ∪ {τ}

Definition. If r ∈ Act∗, then r̂ is the sequence whereby all
occurrences ofτ are removed.

Definition. If r = α1 · · ·αn ∈ Act∗, we writem
r

=⇒ m′ to mean

m
τ

−→∗ ·
α1−→ ·

τ
−→∗ · · ·

τ
−→∗ ·

αn−→ ·
τ

−→∗ m′

That is, there may be any number of intervening silent transi-
tions between the observable sequences. In this particularsystem,
the primary observable entity is the store itself, so the intuitive
meaning of a program becomes the sequence of store updates it
performs.

We only concern ourselves with closed program-store pairs in
this paper, where the definition ofclosedis as follows.

Definition. For a storeσ and a programm, we saym is σ-closed
if for all variables that appear inm, σ̂(x) is defined.

For the rest of the paper, when we say “for any store” or “for all
stores”, we mean for all stores that form closed program-store pairs
with the programs under consideration.

Definition (Bisimulation). A bisimulationfor two reduction rela-
tionsX,Y is a relationR such thatR(σ,m, n) implies

1. Whenever〈σ,m〉
α

−→X 〈σ′,m′〉 then, for somen′,

〈σ, n〉
α̂

=⇒Y 〈σ′, n′〉 andR(σ′,m′, n′)

2. Whenever〈σ, n〉
α

−→Y 〈σ′, n′〉 then, for somem′,

〈σ,m〉
α̂

=⇒X 〈σ′,m′〉 andR(σ′,m′, n′)

In the above definition we abuse notation and letm,m′, n, and
n′ range over both statements and triples of statements. That is,
since it does not add to the discussion to distinguish between 2-
tuples and 4-tuples in the definition, we use a single metavariable
to range over both.

The traditional notion of bisimilarity is a special case of this
one: two programs are bisimilar in the traditional sense if they are
bisimilar for all stores.

Definition. m is said to bebisimilar ton under reduction relations
X,Y for a storeσ, writtenm X≈Y n for σ, if R(σ,m, n) for some
bisimulationR onX,Y . In other words,

X≈Y =
⋃

{R | R is a bisimulation forX,Y }

Lemma 3.1. Bisimilarity is an equivalence relation.

Before stating the main lemma, we note that all nondeterminis-
tic rules in our system step to the same store. We prove this later
in lemma 3.7. For simplicity in stating the main lemma, we simply
say that the two branching stores are always the same.

We are now ready to state the main lemma. In the literature,
diamond lemmas are usually single diamonds. The trace calculus,
however, has a modal flavor with 2-tuples as one mode and 4-tuples
as the other mode. As such, our calculus has six diamonds up to
symmetry.

Lemma 3.2(Diamond Lemma). All of the following hold. For di-
amonds 4–6,〈ρ, kw, t, p〉 is well-formed, a notion we will expound
upon in section 3.1.

1. If R : 〈ρ, p〉
α

−→T 〈σ,m〉 andR′ : 〈ρ, p〉
α

−→T 〈σ, n〉, then
m T≈T n for σ.

〈ρ, p〉

〈σ, n〉〈σ,m〉

R R′

T≈T

2. If R : 〈ρ, p〉
α

−→T 〈σ, kw, t,m〉 and R′ : 〈ρ, p〉
α

−→T

〈σ, k′

w, t
′, n〉, then〈kw, t,m〉 T≈T 〈k′

w, t
′, n〉 for σ.

〈ρ, p〉

〈σ, k′

w, t
′, n〉〈σ, kw, t,m〉

R R′

T≈T

3. If R : 〈ρ, p〉
α

−→T 〈σ,m〉 andR′ : 〈ρ, p〉
α

−→T 〈σ, kw, t, n〉,
thenm T≈T 〈kw, t, n〉 for σ.

〈ρ, p〉

〈σ, kw, t, n〉〈σ,m〉

R R′

T≈T

4. If R : 〈ρ, kw, t, p〉
α

−→T 〈σ,m〉 andR′ : 〈ρ, kw, t, p〉
α

−→T

〈σ, n〉, thenm T≈T n for σ.

〈ρ, kw, t, p〉

〈σ, n〉〈σ,m〉

R R′

T≈T

5. If R : 〈ρ, kw, t, p〉
α

−→T 〈σ, k′

w, t
′,m〉 andR′ : 〈ρ, kw, t, p〉

α
−→T

〈σ, k′′

w, t
′′, n〉, then〈k′

w, t
′,m〉 T≈T 〈k′′

w, t
′′, n〉 for σ.

〈ρ, kw, t, p〉

〈σ, k′′

w, t
′′, n〉〈σ, k′

w, t
′,m〉

R R′

T≈T

6. If R : 〈ρ, kw, t, p〉
α

−→T 〈σ,m〉 andR′ : 〈ρ, kw, t, p〉
α

−→T

〈σ, k′

w, t
′, n〉, thenm T≈T 〈k′

w, t
′, n〉 for σ.

〈ρ, kw, t, p〉

〈σ, k′

w, t
′, n〉〈σ,m〉

R R′

T≈T

This lemma says that should execution branch into two branches,
both branches will do the same thing, at least observationally. We
aim to use the main lemma to arrive at a more familiar place: con-
fluence of stores, namely corollary 3.10.

The rest of this section is organized as follows. Section 3.1
introduces the idea of well-formedness for the 4-tuples, orthe
tracing rules. Section 3.2 introduces the correctness criterion of the
unoptimized trace. Section 3.3 proves the main lemma. Section 3.4
explores the relationship between confluence and our bisimulation
result.

Many proofs in this section are omitted for brevity. The reader
may find them in the full version of the paper athttp://www.cs.
ucla.edu/~palsberg/paper/popl11.pdf.

3.1 Well-Formedness of 4-Tuples

When the calculus decides to initiate a trace, it steps to a configu-
ration in the shape of a 4-tuple. The four components are, in order,
the store, the point in the original code when we started tracing,
the trace so far, and the statement currently being reduced.Not all
4-tuples are created equal, however, as not all 4-tuples arewell-
formed. Intuitively, well-formedness is something like an incre-
mental version of correctness. Only well-formed 4-tuples eventu-
ally become fully correct unoptimized traces. Thus, we wantit to
be an invariant of the computation.

Well-formedness is a tight and intricate relationship between the
original loop, the trace thus far, and the current reduct. Informally,
we need the trace thus far to be a recording of all the steps that the
original loop took just before it reached the current reduct. Before
we formally define well-formedness, we formalize what it means
to be a “trace thus far”.

Definition (Partial Trace Relation). A partial trace relation is a
relationT such thatT (σ, t, l) implies that whenever〈σ, t〉

α
−→B

〈σ′, t′〉 then, for somel′, 〈σ, l〉
α

−→B 〈σ′, l′〉 and

1. If t stepped byBailTrue, t′ = l′

2. Otherwise,T (σ′, t′, l′)

The constituents are as follows:t is the trace andl is the original
code. Recall that botht andl are just statements. The formalization
is a variation on the standard simulation relation and captures the
two properties that a partially constructed trace intuitively satisfies.
First, BailTrue models jumping back to the original code, so we
expect the descendants to be exactly equal. Second, the partial
trace ispartial, so it can terminate before the original code does,
signifying that the rest has not yet been traced.

Definition. We callt apartial traceto l for a storeσ, writtent w l
for σ, if T (σ, t, l) for some partial trace relationT . In other words,

w =
⋃

{T | T is a partial trace relation}

For the definition of well-formedness and subsequent lemmas
we will be working with the reduction relationA, which we have
not used yet, as well as a notion of being “stuck”. Recall thatthe
reduction relationA = B \ {BailTrue}.

Definition. For a reduction relationX, we say a configuration
〈σ,m〉 is not X-stuck iff m = ǫ or 〈σ,m〉

α
−→X 〈σ′,m′〉 for

someσ′, m′.

Definition (Well-Formedness). A 4-tuple 〈σ0, kw, t,m〉 is well-
formediff all the following hold.

1. kw = (while b0 do l0) k0
2. For allσ, either

〈σ, t〉
r

−→∗

A 〈σ′, ǫ〉 and〈σ, l0 kw〉
r

−→∗

A 〈σ′,m〉

or for somet′,

〈σ, t〉
r′

−→∗

A 〈σ′′, t′〉 andt′ isA-stuck but notB-stuck

3. For allσ, t w l0 kw for σ.

This property formalizes the invariant we wish computation
to preserve. First,kw must be the loop where we started tracing.
Second, the tracet must do one of two things. It must either “go far
enough” by terminating in the same reduction sequence that body
of the original loop undergoes to reduce to the current statement,m,
or it must eventually step to some descendant that can only reduce
byBailTrue. Third, t must be a partial trace to the original loop for
all stores.

We now prove that the reduction relationT preserves this in-
variant. We will do this in two steps. First, we prove that thetrac-
ing rules themselves—the rules that step from a 4-tuple to another
4-tuple—preserve well-formedness.

Lemma 3.3. Let p = 〈σ0, kw, t,m〉. If p is well-formed and
p

α
−→T p′ such thatp′ is a 4-tuple, thenp′ is also well-formed.

Proof. The first conjunct holds trivially because no rules change
kw, and we proceed to prove the next two conjuncts together by
case analysis on the structure of the reduction relation.

Second, we prove that whenever we initiate a trace—whenever
we step from a 2-tuple to a 4-tuple—the resulting 4-tuple is well-
formed.

Lemma 3.4. If 〈σ,m〉
α

−→T p′ wherep′ is a 4-tuple, thenp′ is
well-formed.

Proof. By inversion the only rule that results in a 4-tuple isTrace.
Letw = while b do s. We have

〈σ, (if b then (s w)) k〉
τ

−→T 〈σ,w k, ǫ, s w k〉

The first two conjuncts are clearly satisfied. It remains to prove
conjunct 3, thatǫ w s w k for all σ. It suffices to exhibit a partial
trace relationT such that for allσ, T (σ, ǫ, s w k). Sincet = ǫ, we
exhibit the empty relation∅ as one suchT .

Lemmas 3.3 and 3.4 lead us to a more general lemma about
the transitive, reflexive closure of theT reduction relation. This
lemma is not used in the rest of the section, but does clearly convey
that well-formedness is a property preserved by computation in our
calculus.

Lemma 3.5. If 〈σ,m〉
r

−→∗

T p′ wherep′ is a 4-tuple, thenp′ is
well-formed.

3.2 Correctness of the Unoptimized Trace

Recall that the intuition for well-formedness is that it is an incre-
mental correctness. With it we can now build up a bisimulation
relation.5

Lemma 3.6(Stitch Lemma). For somet, let w = while b0 do l0
andw′ = while b0 do t. If for somek, t w l0 w k for all σ and (*)
holds oft, l0 w k, σ then,w′ k B≈B w k for all σ.

(*) For allσ, either

〈σ, t〉
r

−→∗

A 〈σ′, ǫ〉 and〈σ, l0 w k〉
r

−→∗

A 〈σ′, w k〉

5 The unoptimized trace is in fact strongly bisimilar to the original
code. Since we are simply recording some execution path command-for-
command, it shouldn’t be surprising that the resulting trace is exactly equiv-
alent to the original path. In the interest of less mechanismand since
weak bisimilarity subsumes strong bisimilarity, we will directly prove weak
bisimilarity.

or for somet′,

〈σ, t〉
r′

−→∗

A 〈σ′′, t′〉 andt′ isA-stuck but notB-stuck

This lemma is the correctness property we want to express of
unoptimized traces. In prose,w is the original loop, andw′ is the
new loop with the trace stitched in. Thet w l0 w k for all σ and (*)
conditions are what hold oft, l0 w k, σ per well-formedness at the
point of stitching.

The lemma says once we come full circle and stitch the recorded
trace into the original program, that trace is actually equivalent to
the original loop. The reader should bear in mind that this isan
almost extensional equivalence, a stronger notion than intensional
equivalence. The insight here is since we have proven a more re-
strictive property than we need, we can relax it. For fruitful opti-
mization we need to make the relation larger, relaxing extensional
bisimilarity to the intensional version.

Proof. By exhibition of a bisimulation relationR under the rela-
tionsB,B such thatR(σ,w′ k,w k) for all σ.

3.3 Proof of the Diamond Lemma

With the tool of bisimilarity under our belt, we can now make
precise the notion of the soundness ofO. This definition will be
crucial for the proof of the diamond lemma.

Definition (O-Soundness). An O function is sound iff for any
w,w′, k, σ such thatw′ k B≈B w k for all stores,O(w′, σ) k B≈B

w k for σ.

Proof of the diamond lemma.If R andR′ are the same, then we are
done asm = n or 〈kw, t, n〉 = 〈k′

w, t
′, n′〉. It is straightforward

to verify thatR = R′ for diamonds 1, 2, 4, and 5, which are
deterministic, so we only need to prove diamonds 3 and 6. We can
rewrite these diamonds more precisely below.

3. The nondeterministic rules areIfTrue andTrace. We havem =
n by inversion. Further, by lemma 3.4〈σ, kw, t, n〉 is well-
formed.
If R : 〈ρ, p〉

α
−→T 〈σ,m〉 andR′ : 〈ρ, p〉

α
−→T 〈σ, kw, t, n〉,

thenm T≈T 〈kw, t, n〉 for σ.

〈ρ, p〉

〈σ, kw, t, n〉〈σ,m〉

IfTrue Trace

T≈T

6. The nondeterministic rules areRecord andAbort. We have
kw = k′

w andm = n by inversion. Similarly, by lemma 3.3
〈σ, kw, t

′, n〉 is well-formed.
If R : 〈ρ,w, t, p〉

α
−→T 〈σ,m〉 andR′ : 〈ρ, kw, t, p〉

α
−→T

〈σ, k′

w, t
′, n〉, thenm T≈T 〈k′

w, t
′, n〉 for σ.

〈ρ, kw, t, p〉

〈σ, kw, t
′, n〉〈σ,m〉

Abort Record

T≈T

To show that T≈T holds for both diamonds, it suffices to
exhibit a bisimulation relationR under the reductionsT, T such
thatR(σ,m, 〈kw, t, n〉) andR(σ,m, 〈kw, t

′, n〉) hold.

We claim the following relation is a bisimulation for any
m,n, u, kv, kw, t, σ.

R = {(σ,m, n) | m B≈B n for σ}

∪ {(σ,m, 〈kv, u, n〉) | m B≈B n for σ and

〈σ, kv, u, n〉 is well-formed}

∪ {(σ, 〈kw, t,m〉, n) | m B≈B n for σ and

〈σ, kw, t,m〉 is well-formed}

The rest is omitted for brevity.

3.4 From Bisimulation to Confluence

This section aims to be the interface between bisimulation and con-
fluence. As correctness is often studied in terms of determinacy and
confluence, we seek here to prove something akin to confluenceof
stores to show the adequacy of our operational semantics. Tradi-
tionally, confluence theorems are proven from the bottom up using
a diamond lemma, iterating that diamond lemma to build a strip
lemma, and finally using the strip lemma to construct confluence
[16]. Bisimilarity, however, allows us to skip the iteration of the
single-step diamond lemma. Indeed, there is no analog to an iter-
able diamond lemma here. We instead use bisimilarity to directly
obtain a strip lemma. Nevertheless, the techniques and diagrams in
this section are strongly influenced by the clear and readable ap-
proach of Pfenning [16].

First we prove the assumption needed for all cases of the dia-
mond lemma, that nondeterministic branching always branches to
configurations with the same store.

Lemma 3.7. If 〈σ,m〉
α

−→T 〈σ′,m′〉 and〈σ,m〉
α′

−→T 〈σ′′,m′′〉,
thenσ′ = σ′′ andα = α′.

Proof. Straightforward case analysis.

Lemma 3.8 (Strip Lemma). If R : 〈σ,m〉 −→T 〈σ′,m′〉
and R∗′ : 〈σ,m〉 −→∗

T 〈σ′′,m′′〉, then for someρ, n′, n′′,
〈σ′,m′〉 −→∗

T 〈ρ, n′〉 and 〈σ′′,m′′〉 −→∗

T 〈ρ, n′′〉 such that
n′

T≈T n′′ for ρ.

〈σ,m〉

〈σ′′,m′′〉〈σ′,m′〉

〈ρ, n′〉 〈ρ, n′′〉

R R∗′

S∗ S∗′

T≈T

Proof. By case analysis on the structure ofR∗ and the definition of
T≈T .

Now we can prove the diamond property for stores on the
multistep reduction, which we callstore confluence.

Theorem 3.9(Store Confluence). If R∗ : 〈σ,m〉 −→∗

T 〈σ′,m′〉
and R∗′ : 〈σ,m〉 −→∗

T 〈σ′′,m′′〉, then for someρ, n′, n′′,
〈σ′,m′〉 −→∗

T 〈ρ, n′〉 and 〈σ′′,m′′〉 −→∗

T 〈ρ, n′′〉 such that
n′

T≈T n′′ for ρ.

〈σ,m〉

〈σ′′,m′′〉〈σ′,m′〉

〈ρ, n′〉 〈ρ, n′′〉

R∗ R∗′

S∗ S∗′

T≈T

Proof. By induction on the structure ofR∗.

Finally, theorem 3.9 implies the familiar notion of store deter-
minacy for terminating programs.

Corollary 3.10. If 〈σ,m〉 −→∗

T 〈σ′, ǫ〉 and〈σ,m〉 −→∗

T 〈σ′′, ǫ〉,
thenσ′ = σ′′.

4. Sound and Unsound Optimizations
We have achieved our project of proving the essence of trace com-
pilation correct, yet at the same time that result is largelyinteresting
due to its modularity with respect to theO function. In this section
we show the exampleO from section 2.4 to be sound and explore
which kinds ofO functions are sound and which are not sound.

4.1 Soundness of Variable Folding

Let F,FV , andO be the ones presented in figure 4. For brevity
we assume thatFV (s) is defined in the usual way and correctly
generates the set of free variables fors. That is, for some storeσ,
FV (s) the set of variables whichs never writes to inσ during
reduction.

Lemma 4.1. −→∗

B is deterministic.

Proof. −→B has no points of nondeterminism.

Lemma 4.2. O is sound.

Proof. Assuming we have for somew,w′, k such thatw′ k B≈B w k
for all stores, we want to show thatO(w′, σ) k B≈B w k for σ.

Our technique will be showing thatO(w′, σ) k B≈B w′ k, and
then obtaining the desired result via transitivity ofB≈B .

We proceed by case analysis on theO function.

Case: s = while b do s1.
We want to show that

(while b doF (s1, σ,FV (s1))) k B≈B (while b do s1) k

It suffices to exhibit a bisimulation relationR such that

R(σ, (while b doF (s1, σ,FV (s1))) k, (while b do s1) k)

Let s′1 = F (s1, σ,FV (s1)). We claim the following relation is a
bisimulation relation for anym, ρ, σ′. Note thatσ and the loops are
fixed from the assumption.

R = {(ρ,m,m)}

∪ {(σ, (while b do s′1) k,

(while b do s1) k)}

∪ {(σ, (if b then (s′1 while b do s′1)) k,

(if b then (s1 while b do s1)) k)}

∪ {(σ′, (F (n, σ,FV (s1)) while b do s′1) k,

(n while b do s1) k)

| σ′(x) = σ(x) for all free variables ins1}

We proceed by case analysis on the left-side reduction step.

Subcase: The left side and right side are the same.
By lemma 4.1B is deterministic, both sides step using the same

rule, producing the same descendants. But then they are inR by
construction.

〈ρ,m〉 〈ρ,m〉

〈ρ′,m′〉 〈ρ′,m′〉

α α

R

R

Subcase: The left side is(while b do s′1) k and the right side is
(while b do s1) k. Both sides reduce by way ofWhile.

Their descendants are inR by construction.

〈σ, (while b do s′1) k〉 〈σ, (while b do s1) k〉

〈σ′, (if b then (s′1 · · ·) k〉 〈σ′, (if b then (s1 · · ·) k〉

τWhile τ While

R

R

Subcase: The left side is

〈σ, (if b then (s′1 while b do s′1)) k〉

and the right side is

〈σ, (if b then (s1 while b do s1)) k〉

Suppose the left side reduce byIfFalse, then both sides step tok,
which is already inR by way of the first subrelation.

〈σ, (if b then (s′1 · · ·) k〉 〈σ, (if b then (s1 · · ·) k〉

〈σ, k〉 〈σ, k〉

τIfFalse τ IfFalse

R

R

Subcase: The left side is

〈σ, (if b then (s′1 while b do s′1)) k〉

and the right side is

〈σ, (if b then (s1 while b do s1)) k〉

Suppose the left side reduce byIfTrue, we can then fill out the
diagram as follows. The descendants are inR by way of the fourth
subrelation, as

s′1 = F (s1, σ,FV (s1))

〈σ, (if b then (s′1 · · ·) k〉 〈σ, (if b then (s1 · · ·) k〉

〈σ, (s′1 · · ·) k〉 〈σ, (s1 · · ·) k〉

τIfTrue τ IfTrue

R

R

Subcase: The left side is

(F (n, σ,FV (s1)) while b do s′1) k

and the right side is

(n while b do s1) k

The left side steps by way ofAssign. By inversion,n = c n′ and

F (n, σ,FV (s1)) = F (c, σ,FV (s1)) F (n′, σ,FV (s1))

Further,c = x := e. For brevity letn′′ = F (n′, σ,FV (s1)).
By case analysis one we have two subcases. In the case where

e = n, we have an identity. In the case wheree = x′ +1∧ x′ ∈ v,
e = σ(x′) ⊕ 1. We know thatσ(x′) is defined from assumption
that the left side steps at all. This means the left side step looks like
the following. The call toF is abbreviated due to space.

〈σ′, (c′ n′′ · · ·) k〉
δ

−→B 〈σ′[x/σ(x′)⊕ 1], (n′′ · · ·) k〉

whereδ = x/σ(x′)⊕ 1

By inversion then we see that the right side, starting withc,
also steps byAssign. By the definition ofσ̂′ we have the following
reduction for the right side

〈σ′, (c n′ · · ·) k〉
δ′

−→B 〈σ′[x/σ′(x′)⊕ 1], (n′ · · ·) k〉

whereδ′ = x/σ′(x′)⊕ 1

For these two descendants to be inR, we needσ′(x′) = σ(x′).
We know this to hold for all free variables ins1, as their freeness
guarantees them to be never written to durings1’s reduction. We
assumed thatFV correctly generates the set of free variables for
a statement. It is easy to see thatc is a descendant ofs1, thus
x ∈ FV (s1) andσ′(x′) = σ(x′) holds.

SinceFV is correct,x is not free ins1. Therefore,

σ′[x/σ′(x′)⊕ 1](y) = σ(y)

for all y free ins1. This finally gives us

R(σ′[x/σ′(x′)⊕ 1], n′′, n′)

which holds by way of the fourth subrelation.
For the diagram below, letv = σ(x′)⊕ 1.

〈σ′, (F (n, σ,FV (s1)) · · ·) k〉 〈σ′, (n · · ·) k〉

〈σ′[x/v], (F (n′, σ,FV (s1)) · · ·) k〉 〈σ′[x/v], (n′ · · ·) k〉

δAssign δ Assign

R

R

All other cases (wheres is something other than awhile loop)
are identities. The proofs for the converses are symmetric.

We have shownO(w′, σ) k B≈B w′ k for σ. By transitivity,
we have the desired result ofO(w′, σ) k B≈B w k.

The most interesting part of the proof is that in every subcase
we relied on the right side to be able to mirror the left side’smove
exactly in a single step. This is a stronger property than required by
the bisimulation definition, which says onlyvisiblemoves need to
be mirrored.

4.2 Soundness of Dead Branch Elimination

What kinds of optimizations only mirror visible moves? One can
imagine that during tracing we may generate many spurious side-
exits. Suppose we extend our variable folding example to also
eliminate “dead”, or always-falsebails. The modifications needed
for F are shown in figure 5.

For example, considered the following example trace with a
dead side-exit. Clearlyx is free in the body of the traced loop, and
the boolean expressionx 6= 0 is always going to befalse.

Example Trace with Dead Bail
1 while x = 0 do
2 bail x 6= 0 to k1
3 z := 1;

Plugging the above example into the extendedO function will
output the following.

Example Trace with Dead Bail Optimized Away
1 while x = 0 do
2 z := 1;

Such an optimization does not generate code that exactly mir-
rors the original. This fails to hold if we wholly excise deadcondi-
tionals, as the original code would still need to take a step to eval-
uate the conditional to false before skipping it. To show that this
new optimization is still bisimilar, let us extend lemma 4.2with the
proof sketch of a new subcase and its converse.

New subcase and its converse for lemma 4.2.

Subcase: The left side is

(F (n, σ,FV (s1)) while b do s′1) k

and the right side is

(n while b do s1) k

The left side takes some step. Letn = c n′ and

F (n, σ,FV (s1)) = F (n′, σ,FV (s1))

We are concerned with the case whenc = bail b′ to k′ ∧
F (b′, σ,FV (s1)) = false, all other cases forc are identities. For
brevity letn′′ = F (n′, σ,FV (s1)).

The left side step looks like the following for somen′′′. The call
toF is abbreviated due to space.

〈σ′, (n′′ · · ·) k〉
α

−→B 〈σ′′, (n′′′ · · ·) k〉

By inversion we know that̂σ(b′) = false. Since we assumed
thatFV correctly generates the set of free variables fors1 andc is
a s1-descendant, sôσ′(b′) = false. By inversion then we see that
the right side, starting withc, steps byBailFalse.

〈σ′, (c n′ · · ·) k〉
τ

−→B 〈σ′, (n′ · · ·) k〉

It remains to show thatn′ can take a step to match the left
side step thatF (n′, σ,FV (s1)) took. We again decomposen′

into its first command and continuation. We iteratively apply the
same reasoning we just underwent until the first command is not
bail b′′ to k′′ ∧F (b′′, σ,FV (s1)) = false. For these other casesF
acts as an identity for the first command and as congruence forthe
continuation, so clearly it will take the sameα step.

In the diagram below, let+ mean “1 or more times”.

〈σ′, (F (n′, σ,FV (s1)) · · ·) k〉 〈σ′, (n · · ·) k〉

〈σ′′, (F (n′′, σ,FV (s1)) · · ·) k〉

〈σ′, (n′ · · ·) k〉

〈σ′′, (n′′ · · ·) k〉

α

τ BailFalse+

α

R

R

F (b, σ, v) =



















true if b = x = 0 ∧ x ∈ v ∧ σ(x) = 0
false if b = x = 0 ∧ x ∈ v ∧ σ(x) 6= 0
true if b = x 6= 0 ∧ x ∈ v ∧ σ(x) 6= 0
false if b = x 6= 0 ∧ x ∈ v ∧ σ(x) = 0
undef otherwise

F (c, σ, v) =







. . .
ǫ if c = bail b to s1 ∧ F (b, σ, v) = false
. . .

Figure 5. Variable Folding extended with Dead Branch Elimination

F (c, σ, v) =







. . .
ǫ if c = x := e ∧ x has no use sites in the trace
. . .

Figure 6. Variable Folding extended with Dead Branch and Dead Store Elimination

The converse is considerably simpler. We have the case where
the right side steps byBailFalse. By the same reasoning above
concerning free variables, we see that the left side would have had
its bail optimized away intoǫ, thus we can complete the diagram
by usingId.

〈σ′, (F (n′, σ,FV (s1)) · · ·) k〉 〈σ′, (n · · ·) k〉

〈σ′, (F (n′, σ,FV (s1)) · · ·) k〉 〈σ′, (n′ · · ·) k〉

Id τ BailFalse

R

R

All other cases are still identities.

4.3 Unsoundness of Dead Store Elimination

Finally, we want to explore what kinds of optimizations are simply
unsafe in the tracing framework. Put formally, we want to askwhat
kind of optimizations do not produce bisimilar code. Continuing
with our existingO function, suppose we were to extend it with
dead store elimination. That is, suppose variables that we assign to
but have no use sites inside the trace body are simply excised. This
is shown informally in figure 6.

For example, consider the following example trace with a dead
assignment. The variablez is assigned but never used.

Example Trace with Dead Assignment
1 while x = 0 do
2 z := 1;

Plugging the above example into the extendedO function will
output the following.

Example Trace with Dead Assignment Optimized Away
1 while x = 0 do
2 ǫ

Intuitively this is unsafe because even thoughz is dead inside
the trace, there very well may be use sites ofz after the trace!
This intuition is reflected formally. Taking our example above, we
need to show thatz := 1; takes a step that can be mirrored by
ǫ. For someσ, by inversionz := 1 can step only byAssign:
〈σ, z := 1〉

τ
−→B 〈σ[z/1], ǫ〉. ǫ needs to be able to match this

move, but〈σ, ǫ〉 6
τ̂

=⇒B 〈σ[z/1], s〉 for any s. In fact, it does not
step at all.

In this fashion this optimization does not output bisimilarcode,
and is not safe for use inside the tracing framework.

4.4 Soundness of Composition

One property that correct optimizations enjoy in our framework is
that the composition of two correct optimizations also yield a cor-
rect optimization. We give the following two lemmas to demon-
strate this property.

Lemma 4.3. Let I : (Statement× Store) → Statementbe the
identity function on its first argument.I is sound.

Proof. Trivial by the definition ofO-soundness.

Lemma 4.4. Let F,G : (Statement× Store) → Statementbe two
sound optimizations. Let their composition be defined as

F ◦G = λ(s, σ).F (G(s, σ), σ)

F ◦G is sound.

Proof. We want to show that for anyw,w′, k such thatw′ k B≈B w k
for all stores,(F ◦G)(w′, σ) k B≈B w k for σ.

By soundness ofG onw,w′, k we know that

G(w′, σ) k B≈B w k

By soundness ofF onw,G(w′, σ), k we then know that

F (G(w′, σ), σ) k B≈B w k

ButF (G(w′, σ), σ) k = (F ◦G)(w′, σ), so we are done.

5. Related Work
The work carried out in this paper depends on both compiler-
correctness and concurrency techniques. Though the corpora of
both communities are large, there is a dearth of truly relevant
papers that explore purely operational compiler correctness of JIT
compilers from as a high-level as ours. Nevertheless, we have taken
inspiration as well as fruitful comparisons with several works.

Relevant is Wand’s work on parallel compiler correctness [20].
We believe Wand’s enterprise to be, though also employing bisimu-
lations to prove compiler-correctness, of a different flavor than our
own. His approach is the combination of (syntax-directed) denota-
tional semantics and essentiallyβ-convertibility. His picture is also

closer to the traditional picture of compiler correctness [5]—that is,
the compilation process preserves denotation up to bisimulation—
than ours, as his compiler is an ahead-of-time compiler. Theele-
gance of Wand’s work is that he recognized thatβ-convertibility
inducesbisimilarity; in the conclusion he admits that almost all the
required reasoning is done in theλ-caculus and as such, he can
re-use work already done in sequential compiler correctness.

Unlike Wand’s work, our vision of correctness is purely syntax-
directed: the translation itself (if the JIT tracing can be seen as such)
becomes a non-instantaneous process since we have to spell it out
in the operational semantics. This is what makes the enterprise non-
trivial. Our notion of convertibility informally becomes something
akin to “store-convertiblity”, but this is much less powerful thanβ-
convertibility as it does not directly imply bisimilarity.We also do
not have the luxury of bringing to bear the entirety of theλ-calculus
machinery, so our technique here, while still using bisimulations, is
at once more basic and less elegant.

There is also a breadth of literature exploring using bisimulation
to show program equivalence by way of contextual equivalence in
Pierce et al., Lassen et al., and Wand et al. [10, 17–19]. Though
the topics of their specific investigations differ, they allconcern
themselves with using bisimulation as a more tractable proof tech-
nique to prove contextual equivalence without having to universally
quantify over all contexts. Their setting is higher-ordered, modeled
within theλ-calculus. Pierce et al. [19], for instance, aims to prove
bisimiliarity sound and complete with respect to contextual equiv-
alence for a modifiedλ-calculus with recursive types. Wand [10]
aims to improve the proof technique and reasons about aλ-calculus
extended with explicit stores. These works are basic investigations
into the nature of the proof technique. Ours is an application of
the technique to prove equivalence of a dynamically transformed
program. We also arrived at bisimiliarity by an entirely different
motivation, that of proving determinism of a JIT compiler that per-
forms the dynamic transform. We are not met with the difficulty of
universally quantifying contexts; in fact, we fix our correctness to
hold for one context only.

Myreen’s method of creating formally correct JIT compilers
for x86 [15] is at the much lower level of abstraction: machine
language. They use Hoare logic, and so still retain a flavor ofthe
denotational. We are much farther from the “bare metal” thanthey
are.

6. Conclusions and Future Work
We have demonstrated a paradigm for high-level, purely opera-
tional correctness of the tracing JIT compilation technique via
bisimulation and confluence. Unlike traditional ahead-of-time com-
piler correctness where the translation process from the source lan-
guage to the target language is an opaque function, trace compiler-
correctness requires the translation—the tracing—to be spelled
out explicitly. We overcome this difficulty by using bisimulations,
though we strive to maintain continuity with existing purely opera-
tional correctness approaches by returning to confluence.

We hope that the theoretical framework we have provided will
prove useful in reasoning about trace compilers at a high level. We
hope that we have opened up a wealth of possible future research
in the foundational differences betweens traditional and trace opti-
mizations. Though a different problem, we also feel applying the
trace compilation technique to an applicative setting, namely the
λ-calculus, will be a worthy venture. It is also interesting to further
exploreO and the question of just what exactly is observable in
computation. We also hope to look at deriving tools from the tech-
niques described here in the future.

Acknowledgements.We thank Michael Bebenita and the Mozilla
JavaScript team for enlightening discussions about the implementa-

tion of trace compilers. We also thank Jonathan Lee, Oren Freiberg,
Kannan Goudan, Dave Herman, Dimitris Vardoulakis, and the
anonymous reviewers for draft reading and helpful discussions.

References
[1] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A

transparent dynamic optimization system. InPLDI ’00, pages 1–12.
ACM, 2000.

[2] Michael Bebenita, Florian Brandner, Manuel Fahndrich,Francesco
Logozzo, Wolfram Schulte, Nikolai Tillmann, and Herman Venter.
SPUR: A trace-based JIT compiler for CIL. InOOPSLA ’10, 2010.

[3] Michael Bebenita, Mason Chang, Gregor Wagner, Christian Wimmer,
Andreas Gal, and Michael Franz. Trace-based compilation inexecu-
tion environments without interpreters. InPPPJ ’10, 2010.

[4] Mason Chang, Edwin W. Smith, Rick Reitmaier, Michael Bebenita,
Andreas Gal, Christian Wimmer, Brendan Eich, and Michael Franz.
Tracing for web 3.0: trace compilation for the next generation web
applications. InVEE, pages 71–80, 2009.

[5] Joëlle Despeyroux. Proof of translation in natural semantics. InLICS,
pages 193–205, 1986.

[6] Cormac Flanagan and Matthias Felleisen. The semantics of future and
its use in program optimization. InPOPL ’95, pages 209–220. ACM,
1995.

[7] Andreas Gal. Efficient bytecode verification and compilation in a
virtual machine. PhD thesis, 2006. Adviser: Michael Franz.

[8] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson,David
Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare,
Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith,
Rick Reitmaier, Michael Bebenita, Mason Chang, and MichaelFranz.
Trace-based just-in-time type specialization for dynamiclanguages. In
PLDI ’09, pages 465–478. ACM, 2009.

[9] A. J. Kfoury, Michael A. Arbib, and Robert N. Moll.A Programming
Approach to Computability. Springer-Verlag, 1982.

[10] Vasileios Koutavas and Mitchell Wand. Small bisimulations for rea-
soning about higher-order imperative programs. InPOPL ’06, pages
141–152. ACM, 2006.

[11] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian Fred-
eriksen. Proving correctness of compiler optimizations bytemporal
logic. In POPL ’02, pages 283–294. ACM, 2002.

[12] Sorin Lerner, Todd Millstein, and Craig Chambers. Automatically
proving the correctness of compiler optimizations. InPLDI ’03, pages
220–231. ACM, 2003.

[13] Mozilla Metrics. Firefox usage: https://metrics.mozilla.com/.

[14] Robin Milner.Communication and Concurrency. Prentice Hall, 1995.

[15] Magnus O. Myreen. Verified just-in-time compiler on x86. In POPL
’10, pages 107–118. ACM, 2010.

[16] Frank Pfenning. A proof of the Church-Rosser theorem and its rep-
resentation in a logical framework.Journal of Automated Reasoning,
1993.

[17] Kristian Støvring and Soren B. Lassen. A complete, co-inductive
syntactic theory of sequential control and state. InPOPL ’07, pages
161–172. ACM, 2007.

[18] Eijiro Sumii and Benjamin C. Pierce. A bisimulation fordynamic
sealing. InPOPL ’04, pages 161–172. ACM, 2004.

[19] Eijiro Sumii and Benjamin C. Pierce. A bisimulation fortype abstrac-
tion and recursion. InPOPL ’05, pages 63–74. ACM, 2005.

[20] Mitchell Wand. Compiler correctness for parallel languages. InFPCA,
pages 120–134, 1995.

[21] Mitchell Wand and William D. Clinger. Set constraints for destruc-
tive array update optimization.Journal of Functional Programmng,
11(3):319–346, 2001.

[22] Mitchell Wand and Igor Siveroni. Constraint systems for useless
variable elimination. InPOPL ’99, pages 291–302. ACM, 1999.

